CHAPTER 7

ACIDS AND BASES

Nature of Acids and Bases

16. a. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$ or

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{K}=\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

b. $\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{F}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ or

c. $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{K}=\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right]}$
17. An acid is a proton $\left(\mathrm{H}^{+}\right)$donor, and a base is a proton acceptor. A conjugate acid-base pair differs by only a proton $\left(\mathrm{H}^{+}\right)$in the formulas.

Acid	Base	Conjugate Base of Acid	Conjugate Acid of Base
$\mathrm{H}_{2} \mathrm{CO}_{3}$	$\mathrm{H}_{2} \mathrm{O}$	HCO_{3}^{-}	$\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	$\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$	HCO_{3}^{-}	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	$\mathrm{H}_{2} \mathrm{CO}_{3}$

a.	$\mathrm{H}_{2} \mathrm{CO}_{3}$	$\mathrm{H}_{2} \mathrm{O}$
b.	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$	$\mathrm{H}_{2} \mathrm{O}$
c.	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$	HCO_{3}^{-}
$\underset{\text { Acid }}{ }$		
NH_{3}		

Base}}{\mathrm{NH}_{2}^{-}}+\underset{Acid}{Conjugate}\)

One of the NH_{3} molecules acts as a base and accepts a proton to form $\mathrm{NH}_{4}{ }^{+}$. The other NH_{3} molecule acts as an acid and donates a proton to form $\mathrm{NH}_{2}{ }^{-} . \mathrm{NH}_{4}{ }^{+}$is the conjugate acid of the NH_{3} base. In the reverse reaction, $\mathrm{NH}_{4}{ }^{+}$donates a proton. $\mathrm{NH}_{2}{ }^{-}$is the conjugate base of the NH_{3} acid. In the reverse reaction, $\mathrm{NH}_{2}{ }^{-}$accepts a proton. Conjugate acid-base pairs only differ by a H^{+}in the formula.
19. a. The first equation is for the reaction of some generic acid, HA, with $\mathrm{H}_{2} \mathrm{O}$.

$$
\underset{\text { Acid }}{\mathrm{HA}}+\underset{\text { Base }}{\mathrm{H}_{2} \mathrm{O}} \rightleftharpoons \underset{\substack{\text { Conjugate } \\ \text { Acid of } \mathrm{H}_{2} \mathrm{O}}}{\mathrm{H}_{3} \mathrm{O}^{+}}+\underset{\substack{\text { Conjugate } \\ \text { Base of HA }}}{\mathrm{A}^{-}}
$$

HA is the proton donor (the acid) and $\mathrm{H}_{2} \mathrm{O}$ is the proton acceptor (the base). In the reverse reaction, $\mathrm{H}_{3} \mathrm{O}^{+}$is the proton donor (the acid) and A^{-}is the proton acceptor (the base).

The second equation is for some generic base, B, with some generic acid, HX. Note that B has three hydrogens bonded to it.

$$
\underset{\text { Base }}{\mathrm{B}}+\underset{\text { Acid }}{\mathrm{HX}} \rightleftharpoons \underset{\substack{\text { Conjugate } \\ \text { Acid of } \mathrm{B}}}{\mathrm{BH}^{+}}+\underset{\substack{\text { Conjugate } \\ \text { Base of } \mathrm{HX}}}{\mathrm{X}^{-}}
$$

B is the proton acceptor (the base) and HX is the proton donor (the acid). When B accepts a proton, the central atom goes from having 3 bonded hydrogens to 4 bonded hydrogens. In the reverse reaction, BH^{+}is the proton donor (the acid) and X^{-}is the proton acceptor (the base).
b. Arrhenius acids produce H^{+}in solution. So HA in the first equation is an Arrhenius acid. However, in the second equation, H^{+}is not a product, so HX is not an Arrhenius acid. Both HA in the first equation and HX in the second equation are proton donors, so both are considered Brønsted-Lowry acids.

For the bases in the two equations, $\mathrm{H}_{2} \mathrm{O}$ and B , neither of them produce OH^{-}in their equations, so neither of them are Arrhenius bases. Both $\mathrm{H}_{2} \mathrm{O}$ and B accept protons, so both are Brønsted-Lowry bases.
20. Strong acids have a $K_{a} \gg 1$ and weak acids have $K_{a}<1$. Table 7.2 in the text lists some K_{a} values for weak acids. K_{a} values for strong acids are hard to determine so they are not listed in the text. However, there are only a few common strong acids so if you memorize the strong acids, then all other acids will be weak acids. The strong acids to memorize are HCl , $\mathrm{HBr}, \mathrm{HI}, \mathrm{HNO}_{3}, \mathrm{HClO}_{4}$, and $\mathrm{H}_{2} \mathrm{SO}_{4}$.
a. $\quad \mathrm{HClO}_{4}$ is a strong acid.
b. HOCl is a weak acid $\left(\mathrm{K}_{\mathrm{a}}=3.5 \times 10^{-8}\right)$.
c. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a strong acid.
d. $\mathrm{H}_{2} \mathrm{SO}_{3}$ is a weak diprotic acid because the $\mathrm{K}_{\mathrm{a} 1}$ and $\mathrm{K}_{\mathrm{a} 2}$ values are less than 1 .
21. The K_{a} value is directly related to acid strength. As K_{a} increases, acid strength increases. For water, use K_{w} when comparing the acid strength of water to other species. The K_{a} values are:
HClO_{4} : strong acid $\left(\mathrm{K}_{\mathrm{a}} \gg 1\right) ; \mathrm{HClO}_{2}: \mathrm{K}_{\mathrm{a}}=1.2 \times 10^{-2}$
$\mathrm{NH}_{4}{ }^{+}: \mathrm{K}_{\mathrm{a}}=5.6 \times 10^{-10} ; \mathrm{H}_{2} \mathrm{O}: \mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$

From the K_{a} values, the ordering is: $\mathrm{HClO}_{4}>\mathrm{HClO}_{2}>\mathrm{NH}_{4}{ }^{+}>\mathrm{H}_{2} \mathrm{O}$
22. Except for water, these are the conjugate bases of the acids in the preceding exercise. In general, the weaker the acid, the stronger the conjugate base. $\mathrm{ClO}_{4}{ }^{-}$is the conjugate base of a strong acid; it is a terrible base (worse than water). The ordering is $\mathrm{NH}_{3}>\mathrm{ClO}_{2}^{-}>\mathrm{H}_{2} \mathrm{O}>$ $\mathrm{ClO}_{4}{ }^{-}$.
23. The dissociation reaction (the K_{a} reaction) of an acid in water commonly omits water as a reactant. We will follow this practice. All dissociation reactions produce H^{+}and the conjugate base of the acid that is dissociated.
a. $\quad \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}$
b. $\quad \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+}\right]}{\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}\right]}$
c. $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq})$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right]}
$$

24. a. $\mathrm{HClO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{ClO}_{4}^{-}(\mathrm{aq})$. Only the forward reaction is indicated because HClO_{4} is a strong acid and is basically 100% dissociated in water. For acids, the dissociation reaction is commonly written without water as a reactant. The common abbreviation for this reaction is $\mathrm{HClO}_{4}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{ClO}_{4}^{-}(\mathrm{aq})$. This reaction is also called the K_{a} reaction because the equilibrium constant for this reaction is designated as K_{a}.
b. Propanoic acid is a weak acid, so it is only partially dissociated in water. The dissociation reaction is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}(\mathrm{aq})$ or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}(\mathrm{aq})$.
c. $\mathrm{NH}_{4}{ }^{+}$is a weak acid. Similar to propanoic acid, the dissociation reaction is:

$$
\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \text { or } \mathrm{NH}_{4}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq})
$$

25. a. HCl is a strong acid, and water is a very weak acid with $\mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14} . \mathrm{HCl}$ is a much stronger acid than $\mathrm{H}_{2} \mathrm{O}$.
b. $\mathrm{H}_{2} \mathrm{O}, \mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14} ; \mathrm{HNO}_{2}, \mathrm{~K}_{\mathrm{a}}=4.0 \times 10^{-4} ; \mathrm{HNO}_{2}$ is a stronger acid than $\mathrm{H}_{2} \mathrm{O}$ because K_{a} for $\mathrm{HNO}_{2}>\mathrm{K}_{\mathrm{w}}$ for $\mathrm{H}_{2} \mathrm{O}$.
c. $\mathrm{HOC}_{6} \mathrm{H}_{5}, \mathrm{~K}_{\mathrm{a}}=1.6 \times 10^{-10} ; \mathrm{HCN}, \mathrm{K}_{\mathrm{a}}=6.2 \times 10^{-10} ; \mathrm{HCN}$ is a slightly stronger acid than $\mathrm{HOC}_{6} \mathrm{H}_{5}$ because K_{a} for $\mathrm{HCN}>\mathrm{K}_{\mathrm{a}}$ for $\mathrm{HOC}_{6} \mathrm{H}_{5}$.
26. a. $\mathrm{H}_{2} \mathrm{O}$; the conjugate bases of strong acids are extremely weak bases $\left(\mathrm{K}_{\mathrm{b}}<1 \times 10^{-14}\right)$.
b. NO_{2}^{-}; the conjugate bases of weak acids are weak bases $\left(1 \times 10^{-14}<\mathrm{K}_{\mathrm{b}}<1\right)$.
c. $\quad \mathrm{OC}_{6} \mathrm{H}_{5}{ }^{-}$; for a conjugate acid-base pair, $\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}$. From this relationship, the stronger the acid, the weaker is the conjugate base (K_{b} decreases as K_{a} increases). Because HCN is a stronger acid than $\mathrm{HOC}_{6} \mathrm{H}_{5}\left(\mathrm{~K}_{\mathrm{a}}\right.$ for $\mathrm{HCN}>\mathrm{K}_{\mathrm{a}}$ for $\left.\mathrm{HOC}_{6} \mathrm{H}_{5}\right), \mathrm{OC}_{6} \mathrm{H}_{5}{ }^{-}$ will be a stronger base than CN^{-}.
27. In deciding whether a substance is an acid or a base, strong or weak, you should keep in mind a couple ideas:
28. There are only a few common strong acids and strong bases all of which should be memorized. Common strong acids $=\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HNO}_{3}, \mathrm{HClO}_{4}$, and $\mathrm{H}_{2} \mathrm{SO}_{4}$. Common strong bases $=\mathrm{LiOH}, \mathrm{NaOH}, \mathrm{KOH}, \mathrm{RbOH}, \mathrm{CsOH}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Sr}(\mathrm{OH})_{2}$, and $\mathrm{Ba}(\mathrm{OH})_{2}$.
29. All other acids and bases are weak and will have K_{a} and K_{b} values of less than 1 but greater than $K_{w}\left(10^{-14}\right)$. Reference Table 7.2 for K_{a} values for some weak acids and Table 7.3 for K_{b} values for some weak bases. There are too many weak acids and weak bases to memorize them all. Therefore, use the tables of K_{a} and K_{b} values to help you identify weak acids and weak bases. Appendix 5 contains more complete tables of K_{a} and K_{b} values.
a. weak acid $\left(\mathrm{K}_{\mathrm{a}}=4.0 \times 10^{-4}\right)$
b. strong acid
c. weak base $\left(\mathrm{K}_{\mathrm{b}}=4.38 \times 10^{-4}\right)$
d. strong base
e. weak base $\left(K_{b}=1.8 \times 10^{-5}\right)$
f. weak acid $\left(\mathrm{K}_{\mathrm{a}}=7.2 \times 10^{-4}\right)$
g. weak acid $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}\right)$
h. strong base
i. strong acid
30. The $\mathrm{NH}_{4}{ }^{+}$ion is a weak acid because it lies between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{O}^{+}\left(\mathrm{H}^{+}\right)$in terms of acid strength. Weak acids are better acids than water, thus their aqueous solutions are acidic. They are weak acids because they are not as strong as $\mathrm{H}_{3} \mathrm{O}^{+}\left(\mathrm{H}^{+}\right)$. Weak acids only partially dissociate in water and have K_{a} values of between 10^{-14} and 1 .
31. The beaker on the left represents a strong acid in solution; the acid HA is 100% dissociated into the H^{+}and A^{-}ions. The beaker on the right represents a weak acid in solution; only a little bit of the acid HB dissociates into ions, so the acid exists mostly as undissociated HB molecules in water.
a. HNO_{2} : weak acid beaker
b. HNO_{3} : strong acid beaker
c. HCl : strong acid beaker
d. HF: weak acid beaker
e. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$: weak acid beaker
32. All K_{b} reactions refer to the base reacting with water to produce the conjugate acid of the base and OH^{-}.
a. $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{NH}_{4}^{+}\right]}{\left[\mathrm{NH}_{3}\right]}$
b. $\mathrm{CN}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{HCN}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right][\mathrm{HCN}]}{\left[\mathrm{CN}^{-}\right]}
$$

c. $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}\right]}{\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right]}$
d. $\quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right]}$
31. a. $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$
b. An acid-base reaction can be thought of as a competition between two opposing bases. Because this equilibrium lies far to the left $\left(\mathrm{K}_{\mathrm{a}}<1\right), \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$is a stronger base than $\mathrm{H}_{2} \mathrm{O}$.
c. The acetate ion is a better base than water and produces basic solutions in water. When we put acetate ion into solution as the only major basic species, the reaction is:

$$
\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{OH}^{-}
$$

Now the competition is between $\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$and OH^{-}for the proton. Hydroxide ion is the strongest base possible in water. The preceding equilibrium lies far to the left resulting in $\mathrm{a} \mathrm{K}_{\mathrm{b}}$ value of less than 1 . Those species we specifically call weak bases $\left(10^{-14}<\mathrm{K}_{\mathrm{b}}<1\right)$ lie between $\mathrm{H}_{2} \mathrm{O}$ and OH^{-}in base strength. Weak bases are stronger bases than water but are weaker bases than OH^{-}.

Autoionization of Water and pH Scale

32. a. $\left[\mathrm{OH}^{-}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}=\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-7}}=1.0 \times 10^{-7} \mathrm{M}$; the solution is neutral.

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(1.0 \times 10^{-7}\right)=7.00 ; \mathrm{pOH}=14.00-7.00=7.00
$$

b. $\quad\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10^{-14}}{8.3 \times 10^{-16}}=12 \mathrm{M}$; the solution is basic.

$$
\mathrm{pH}=-\log \left(8.3 \times 10^{-16}\right)=15.08 ; \mathrm{pOH}=14.00-15.08=-1.08
$$

c. $\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10^{-14}}{12}=8.3 \times 10^{-16} \mathrm{M}$; the solution is acidic.

$$
\mathrm{pH}=-\log (12)=-1.08 ; \mathrm{pOH}=14.00-(-1.08)=15.08
$$

d. $\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10^{-14}}{5.4 \times 10^{-5}}=1.9 \times 10^{-10} \mathrm{M}$; the solution is acidic.

$$
\mathrm{pH}=-\log \left(5.4 \times 10^{-5}\right)=4.27 ; \mathrm{pOH}=14.00-4.27=9.73
$$

33. At $25^{\circ} \mathrm{C}$, the relationship $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$ always holds for aqueous solutions. When $\left[\mathrm{H}^{+}\right]$is greater than $1.0 \times 10^{-7} \mathrm{M}$, the solution is acidic; when $\left[\mathrm{H}^{+}\right]$is less than $1.0 \times$ $10^{-7} \mathrm{M}$, the solution is basic; when $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-7} \mathrm{M}$, the solution is neutral. In terms of $\left[\mathrm{OH}^{-}\right]$, an acidic solution has $\left[\mathrm{OH}^{-}\right]<1.0 \times 10^{-7} \mathrm{M}$, a basic solution has $\left[\mathrm{OH}^{-}\right]>1.0 \times 10^{-7}$ M, and a neutral solution has $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}$. At $25^{\circ} \mathrm{C}, \mathrm{pH}+\mathrm{pOH}=14.00$.
a. $\quad\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}=\frac{1.0 \times 10^{-14}}{1.5}=6.7 \times 10^{-15} \mathrm{M}$; basic

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log (1.5)=-0.18 ; \mathrm{pH}=14.00-\mathrm{pOH}=14.00-(-0.18)=14.18
$$

b. $\quad\left[\mathrm{H}^{+}\right]=\frac{1.0 \times 10^{-14}}{3.6 \times 10^{-15}}=2.8 \mathrm{M}$; acidic

$$
\mathrm{pOH}=-\log \left(3.6 \times 10^{-15}\right)=14.44 ; \mathrm{pH}=14.00-14.44=-0.44
$$

c. $\left[\mathrm{H}^{+}\right]=\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-7}}=1.0 \times 10^{-7} \mathrm{M}$; neutral

$$
\mathrm{pOH}=-\log \left(1.0 \times 10^{-7}\right)=7.00 ; \mathrm{pH}=14.00-7.00=7.00
$$

d. $\quad\left[\mathrm{H}^{+}\right]=\frac{1.0 \times 10^{-14}}{7.3 \times 10^{-4}}=1.4 \times 10^{-11} \mathrm{M}$; basic

$$
\mathrm{pOH}=-\log \left(7.3 \times 10^{-4}\right)=3.14 ; \mathrm{pH}=14.00-3.14=10.86
$$

Note that pH is greater than 14.00 when $\left[\mathrm{OH}^{-}\right]$is greater than 1.0 M (an extremely basic solution). Also note the the pH is negative when $\left[\mathrm{H}^{+}\right]$is greater than $1.0 M$ (an extremely acidic solution).
34. At $25^{\circ} \mathrm{C}: \mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$and $\mathrm{pH}+\mathrm{pOH}=14.00$; neutral solution:

$$
\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M} ; \mathrm{pH}=\mathrm{pOH}=-\log \left(1.0 \times 10^{-7}\right)=7.00
$$

Acidic solution at $25^{\circ} \mathrm{C}$:
$\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right] ;\left[\mathrm{H}^{+}\right]>1.0 \times 10^{-7} \mathrm{M} ;\left[\mathrm{OH}^{-}\right]<1.0 \times 10^{-7} \mathrm{M} ; \mathrm{pH}<7.00 ; \mathrm{pOH}>7.00$
Basic solution at $25^{\circ} \mathrm{C}$:
$\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}^{+}\right] ;\left[\mathrm{OH}^{-}\right]>1.0 \times 10^{-7} \mathrm{M} ;\left[\mathrm{H}^{+}\right]<1.0 \times 10^{-7} \mathrm{M} ; \mathrm{pOH}<7.00 ; \mathrm{pH}>7.00$
As a solution becomes more acidic, $\left[\mathrm{H}^{+}\right]$increases, so $\left[\mathrm{OH}^{-}\right]$decreases, pH decreases, and pOH increases. As a solution becomes more basic, $\left[\mathrm{OH}^{-}\right]$increases, so $\left[\mathrm{H}^{+}\right]$decreases, pH increases, and pOH decreases.
35.
a. $\quad\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}},\left[\mathrm{H}^{+}\right]=10^{-7.40}=4.0 \times 10^{-8} \mathrm{M}$
$\mathrm{pOH}=14.00-\mathrm{pH}=14.00-7.40=6.60 ;\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}=10^{-6.60}=2.5 \times 10^{-7} \mathrm{M}$ or $\left[\mathrm{OH}^{-}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}=\frac{1.0 \times 10^{-14}}{4.0 \times 10^{-8}}=2.5 \times 10^{-7} \mathrm{M}$; this solution is basic since $\mathrm{pH}>7.00$.
b. $\left[\mathrm{H}^{+}\right]=10^{-15.3}=5 \times 10^{-16} \mathrm{M} ; \mathrm{pOH}=14.00-15.3=-1.3 ;\left[\mathrm{OH}^{-}\right]=10^{-(-1.3)}=20 \mathrm{M}$; basic
c. $\left[\mathrm{H}^{+}\right]=10^{-(-1.0)}=10 \mathrm{M} ; \mathrm{pOH}=14.0-(-1.0)=15.0 ;\left[\mathrm{OH}^{-}\right]=10^{-15.0}=$ $1 \times 10^{-15} \mathrm{M}$; acidic
d. $\left[\mathrm{H}^{+}\right]=10^{-3.20}=6.3 \times 10^{-4} \mathrm{M} ; \mathrm{pOH}=14.00-3.20=10.80 ;\left[\mathrm{OH}^{-}\right]=10^{-10.80}=$ $1.6 \times 10^{-11} \mathrm{M}$; acidic
e. $\left[\mathrm{OH}^{-}\right]=10^{-5.0}=1 \times 10^{-5} \mathrm{M} ; \mathrm{pH}=14.0-\mathrm{pOH}=14.0-5.0=9.0 ;\left[\mathrm{H}^{+}\right]=10^{-9.0}=$ $1 \times 10^{-9} \mathrm{M}$; basic
f. $\quad\left[\mathrm{OH}^{-}\right]=10^{-9.60}=2.5 \times 10^{-10} \mathrm{M} ; \mathrm{pH}=14.00-9.60=4.40 ;\left[\mathrm{H}^{+}\right]=10^{-4.40}=4.0 \times 10^{-5} \mathrm{M}$; acidic
36. a. Because the value of the equilibrium constant increases as the temperature increases, the reaction is endothermic. In endothermic reactions, heat is a reactant, so an increase in temperature (heat) shifts the reaction to produce more products and increases K in the process.
b. $\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{w}}=5.47 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$

In pure water $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$, so $5.47 \times 10^{-14}=\left[\mathrm{H}^{+}\right]^{2},\left[\mathrm{H}^{+}\right]=2.34 \times 10^{-7} \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(2.34 \times 10^{-7}\right)=6.631$
A neutral solution of water at $50 .{ }^{\circ} \mathrm{C}$ has:

$$
\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right] ;\left[\mathrm{H}^{+}\right]=2.34 \times 10^{-7} \mathrm{M} ; \mathrm{pH}=6.631
$$

Obviously, the condition that $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$is the most general definition of a neutral solution.
c. $\begin{array}{rllll}\text { Temp }\left({ }^{\circ} \mathrm{C}\right) & \operatorname{Temp}(\mathrm{K}) & 1 / \mathrm{T}\left(\mathrm{K}^{-1}\right) & \mathrm{K}_{\mathrm{w}} & \ln \mathrm{K}_{\mathrm{w}}\end{array}$

0	273	3.66×10^{-3}	1.14×10^{-15}	-34.408
25	298	3.36×10^{-3}	1.00×10^{-14}	-32.236
35	308	3.25×10^{-3}	2.09×10^{-14}	-31.499
40.	313	3.19×10^{-3}	2.92×10^{-14}	-31.165
50.	323	3.10×10^{-3}	5.47×10^{-14}	-30.537

From the graph: $37^{\circ} \mathrm{C}=310 . \mathrm{K} ; 1 / \mathrm{T}=3.23 \times 10^{-3} \mathrm{~K}^{-1}$

$$
\ln K_{w}=-31.38, K_{w}=e^{-31.38}=2.35 \times 10^{-14}
$$

d. At $37^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{w}}=2.35 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]^{2},\left[\mathrm{H}^{+}\right]=1.53 \times 10^{-7} \mathrm{M}$ $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(1.53 \times 10^{-7}\right)=6.815$
37.
a. $\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{w}}=2.92 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$

In pure water: $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right], 2.92 \times 10^{-14}=\left[\mathrm{H}^{+}\right]^{2},\left[\mathrm{H}^{+}\right]=1.71 \times 10^{-7} \mathrm{M}=\left[\mathrm{OH}^{-}\right]$
b. $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(1.71 \times 10^{-7}\right)=6.767$
c. $\quad\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=\left(2.92 \times 10^{-14}\right) / 0.10=2.9 \times 10^{-13} \mathrm{M} ; \mathrm{pH}=-\log \left(2.9 \times 10^{-13}\right)=12.54$
38. a. $\quad \mathrm{pOH}=14.00-9.63=4.37 ; \quad\left[\mathrm{H}^{+}\right]=10^{-9.63}=2.3 \times 10^{-10} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=10^{-4.37}=4.3 \times 10^{-5} \mathrm{M}$; basic
b. $\quad\left[\mathrm{H}^{+}\right]=\frac{1.0 \times 10^{-14}}{3.9 \times 10^{-6}}=2.6 \times 10^{-9} \mathrm{M} ; \mathrm{pH}=-\log \left(2.6 \times 10^{-9}\right)=8.59$
$\mathrm{pOH}=14.00-8.59=5.41$; basic
c. $\mathrm{pH}=-\log (0.027)=1.57 ; \mathrm{pOH}=14.00-1.57=12.43$

$$
\left[\mathrm{OH}^{-}\right]=10^{-12.43}=3.7 \times 10^{-13} \mathrm{M} ; \text { acidic }
$$

d. $\mathrm{pH}=14.0-12.2=1.8 ;\left[\mathrm{H}^{+}\right]=10^{-1.8}=1.6 \times 10^{-2} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=10^{-12.2}=6 \times 10^{-13} \mathrm{M}$; acidic

Solutions of Acids

39. HCl is a strong acid. $\left[\mathrm{H}^{+}\right]=10^{-1.50}=3.16 \times 10^{-2} \mathrm{M}$ (carrying one extra sig. fig.)
$M_{1} \mathrm{~V}_{1}=M_{2} \mathrm{~V}_{2}, \quad \mathrm{~V}_{1}=\frac{M_{2} \mathrm{~V}_{2}}{M_{1}}=\frac{3.16 \times 10^{-2} \mathrm{~mol} / \mathrm{L} \times 1.6 \mathrm{~L}}{12 \mathrm{~mol} / \mathrm{L}}=4.2 \times 10^{-3} \mathrm{~L}$
4.2 mL of 12 M HCl with enough water added to make 1600 mL of solution will result in a solution having $\left[\mathrm{H}^{+}\right]=3.2 \times 10^{-2} \mathrm{M}$ and $\mathrm{pH}=1.50$.
40. $\left[\mathrm{H}^{+}\right]=10^{-5.10}=7.9 \times 10^{-6} \mathrm{M} ; \quad \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$

Because HNO_{3} is a strong acid, we have a $7.9 \times 10^{-6} \mathrm{M} \mathrm{HNO}_{3}$ solution.
$0.2500 \mathrm{~L} \times \frac{7.9 \times 10^{-6} \mathrm{molHNO}_{3}}{\mathrm{~L}} \times \frac{63.02 \mathrm{~g} \mathrm{HNO}_{3}}{\mathrm{molHNO}_{3}}=1.2 \times 10^{-4} \mathrm{~g} \mathrm{HNO}_{3}$
41. Strong acids are assumed to completely dissociate in water, for example, $\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow$ $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$ or $\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$.
a. A 0.10 M HCl solution gives $0.10 \mathrm{M}^{+}$and $0.10 \mathrm{M} \mathrm{Cl}^{-}$because HCl completely dissociates. The amount of H^{+}from $\mathrm{H}_{2} \mathrm{O}$ will be insignificant.
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log (0.10)=1.00$
b. $\quad 5.0 \mathrm{M} \mathrm{H}^{+}$is produced when $5.0 \mathrm{M} \mathrm{HClO}_{4}$ completely dissociates. The amount of H^{+}from $\mathrm{H}_{2} \mathrm{O}$ will be insignificant. $\mathrm{pH}=-\log (5.0)=-0.70$ (Negative pH values just indicate very concentrated acid solutions.)
c. $\quad 1.0 \times 10^{-11} M \mathrm{H}^{+}$is produced when $1.0 \times 10^{-11} \mathrm{M} \mathrm{HI}$ completely dissociates. If you take the negative \log of 1.0×10^{-11}, this gives $\mathrm{pH}=11.00$. This is impossible! We dissolved an acid in water and got a basic pH . What we must consider in this problem is that water by itself donates $1.0 \times 10^{-7} \mathrm{M} \mathrm{H}^{+}$. We can normally ignore the small amount of H^{+}from $\mathrm{H}_{2} \mathrm{O}$ except when we have a very dilute solution of an acid (as in the case here). Therefore, the pH is that of neutral water $(\mathrm{pH}=7.00)$ because the amount of HI present is insignificant.
42. Both are strong acids, which are assumed to completely dissociate in water.

$$
\begin{aligned}
& 0.0500 \mathrm{~L} \times 0.050 \mathrm{~mol} / \mathrm{L}=2.5 \times 10^{-3} \mathrm{~mol} \mathrm{HBr}=2.5 \times 10^{-3} \mathrm{~mol} \mathrm{H}^{+}+2.5 \times 10^{-3} \mathrm{~mol} \mathrm{Br}^{-} \\
& 0.1500 \mathrm{~L} \times 0.10 \mathrm{~mol} / \mathrm{L}=1.5 \times 10^{-2} \mathrm{~mol} \mathrm{HI}=1.5 \times 10^{-2} \mathrm{~mol} \mathrm{H}^{+}+1.5 \times 10^{-2} \mathrm{~mol} \mathrm{I}^{-}
\end{aligned}
$$

$$
\left[\mathrm{H}^{+}\right]=\frac{\left(2.5 \times 10^{-3}+1.5 \times 10^{-2}\right) \mathrm{mol}}{0.2000 \mathrm{~L}}=0.088 \mathrm{M} ; \quad \mathrm{pH}=-\log (0.088)=1.06
$$

43. a. HA is a weak acid. Most of the acid is present as HA molecules; only one set of H^{+} and A^{-}ions is present. In a strong acid, all of the acid would be dissociated into H^{+} and A^{-}ions.
b. This picture is the result of 1 out of 10 HA molecules dissociating.

Percent dissociation $=\frac{1}{10} \times 100=10 \%($ an exact number $)$

$$
\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-} \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

Initial $0.20 \mathrm{M} \quad \sim 0 \quad 0$ $x \mathrm{~mol} / \mathrm{L}$ HA dissociates to reach equilibrium
$\begin{array}{lrrrr}\text { Change } & -x & \rightarrow & +x & +x \\ \text { Equil. } & 0.20-x & x & x\end{array}$
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]=x=0.10 \times 0.20 \mathrm{M}=0.020 \mathrm{M} ;[\mathrm{HA}]=0.20-0.020=0.18 \mathrm{M}$
$\mathrm{K}_{\mathrm{a}}=\frac{(0.020)^{2}}{0.18}=2.2 \times 10^{-3}$
44. a. $\quad \mathrm{HOC}_{6} \mathrm{H}_{5}\left(\mathrm{~K}_{\mathrm{a}}=1.6 \times 10^{-10}\right)$ and $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}\right)$ are the major species. The major equilibrium is the dissociation of $\mathrm{HOC}_{6} \mathrm{H}_{5}$. Solving the weak acid problem:

$$
\mathrm{HOC}_{6} \mathrm{H}_{5} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OC}_{6} \mathrm{H}_{5}^{-}
$$

Initial

$$
0.250 \mathrm{M}
$$

~ 0
0 $x \mathrm{~mol} / \mathrm{L} \mathrm{HOC}_{6} \mathrm{H}_{5}$ dissociates to reach equilibrium
$\begin{array}{lllrr}\text { Change } & -x & \rightarrow & +x & +x \\ \text { Equil. } & 0.250-x & & x & x\end{array}$
$\mathrm{K}_{\mathrm{a}}=1.6 \times 10^{-10}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OC}_{6} \mathrm{H}_{5}{ }^{-}\right]}{\left[\mathrm{HOC}_{6} \mathrm{H}_{5}\right]}=\frac{x^{2}}{0.250-x} \approx \frac{x^{2}}{0.250} \quad($ assuming $x \ll 0.250)$
$x=\left[\mathrm{H}^{+}\right]=6.3 \times 10^{-6} \mathrm{M}$; checking assumption: x is $2.5 \times 10^{-3} \%$ of 0.250 , so assumption is valid by the 5% rule.
$\mathrm{pH}=-\log \left(6.3 \times 10^{-6}\right)=5.20$
b. $\mathrm{HCN}\left(\mathrm{K}_{\mathrm{a}}=6.2 \times 10^{-10}\right)$ and $\mathrm{H}_{2} \mathrm{O}$ are the major species. HCN is the major source of H^{+}.

$$
\mathrm{HCN} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CN}^{-}
$$

Initial
$0.250 \mathrm{M} \quad \sim 0 \quad 0$ $x \mathrm{~mol} / \mathrm{L} \mathrm{HCN}$ dissociates to reach equilibrium

Change	$-x$	\rightarrow	$+x$
Equil.	$0.250-x$	x	$+x$

$\mathrm{K}_{\mathrm{a}}=6.2 \times 10^{-10}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CN}^{-}\right]}{[\mathrm{HCN}]}=\frac{x^{2}}{0.250-x} \approx \frac{x^{2}}{0.250} \quad($ assuming $x \ll 0.250)$
$x=\left[\mathrm{H}^{+}\right]=1.2 \times 10^{-5} \mathrm{M}$; checking assumption: x is $4.8 \times 10^{-3} \%$ of 0.250 .
Assumptions good. $\mathrm{pH}=-\log \left(1.2 \times 10^{-5}\right)=4.92$
45. a. $\mathrm{HNO}_{2}\left(\mathrm{~K}_{\mathrm{a}}=4.0 \times 10^{-4}\right)$ and $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}\right)$ are the major species. HNO_{2} is a much stronger acid than $\mathrm{H}_{2} \mathrm{O}$, so it is the major source of H^{+}. However, HNO_{2} is a weak acid ($\mathrm{K}_{\mathrm{a}}<1$), so it only partially dissociates in water. We must solve an equilibrium problem to determine $\left[\mathrm{H}^{+}\right]$. In the Solutions Guide, we will summarize the initial, change, and equilibrium concentrations into one table called the ICE table. Solving the weak acid problem:

Initial $0.250 \mathrm{M} \quad \sim 0 \quad 0$
$x \mathrm{~mol} / \mathrm{L} \mathrm{HNO}_{2}$ dissociates to reach equilibrium

Change	$-x$	\rightarrow	$+x$	$+x$
Equil.	$0.250-x$		x	x

$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{NO}_{2}{ }^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}=4.0 \times 10^{-4}=\frac{x^{2}}{0.250-x}$; if we assume $x \ll 0.250$, then:

$$
4.0 \times 10^{-4} \approx \frac{x^{2}}{0.250}, \quad x=\sqrt{4.0 \times 10^{-4}(0.250)}=0.010 \mathrm{M}
$$

We must check the assumption: $\frac{x}{0.250} \times 100=\frac{0.010}{0.250} \times 100=4.0 \%$
All the assumptions are good. The H^{+}contribution from water $\left(1 \times 10^{-7} M\right)$ is negligible, and x is small compared to 0.250 (percent error $=4.0 \%$). If the percent error is less than 5% for an assumption, we will consider it a valid assumption (called the 5% rule).
Finishing the problem: $x=0.010 M=\left[\mathrm{H}^{+}\right] ; \mathrm{pH}=-\log (0.010)=2.00$
b. $\quad \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$ and $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}\right)$ are the major species.
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ is the major source of H^{+}. Solving the weak acid problem:

$$
\begin{aligned}
& x=2.1 \times 10^{-3} \mathrm{M} \text {; checking assumption: } \frac{2.1 \times 10^{-3}}{0.250} \times 100=0.84 \% \text {. Assumptions good. } \\
& {\left[\mathrm{H}^{+}\right]=x=2.1 \times 10^{-3} \mathrm{M} ; \mathrm{pH}=-\log \left(2.1 \times 10^{-3}\right)=2.68}
\end{aligned}
$$

46. Major species: $\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{ClO}_{2}\left(\mathrm{~K}_{\mathrm{a}}=1.35 \times 10^{-3}\right)$ and $\mathrm{H}_{2} \mathrm{O}$; major source of $\mathrm{H}^{+}: \mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{ClO}_{2}$

Checking the assumptions finds that x is 12% of 0.10 which fails the 5% rule. We must solve $1.35 \times 10^{-3}=x^{2} /(0.10-x)$ exactly using either the method of successive approximations or the quadratic equation. Using either method gives $x=\left[\mathrm{H}^{+}\right]=1.1 \times 10^{-2} M . \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=$ $-\log \left(1.1 \times 10^{-2}\right)=1.96$.
47. This is a weak acid in water. Solving the weak acid problem:

The assumption $x \ll 0.020$ is not good (x is more than 5% of 0.020). We must solve $x^{2} /(0.020-x)=7.2 \times 10^{-4}$ exactly by using either the quadratic formula or the method of successive approximations (see Appendix 1 of the text). Using successive approximations, we let $0.016 M$ be a new approximation for [HF]. That is, in the denominator try $x=0.0038$ (the value of x we calculated making the normal assumption) so that $0.020-0.0038=0.016$; then solve for a new value of x in the numerator.

$$
\frac{x^{2}}{0.020-x} \approx \frac{x^{2}}{0.016}=7.2 \times 10^{-4}, x=3.4 \times 10^{-3}
$$

We use this new value of x to further refine our estimate of [HF], that is, $0.020-x=$ $0.020-0.0034=0.0166$ (carrying an extra sig. fig.).

$$
\frac{x^{2}}{0.020-x} \approx \frac{x^{2}}{0.0166}=7.2 \times 10^{-4}, x=3.5 \times 10^{-3}
$$

We repeat until we get a self-consistent answer. This would be the same answer we would get solving exactly using the quadratic equation. In this case it is, $x=3.5 \times 10^{-3}$. Thus:

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\left[\mathrm{F}^{-}\right]=x=3.5 \times 10^{-3} \mathrm{M} ;\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{H}^{+}\right]=2.9 \times 10^{-12} \mathrm{M}} \\
& {[\mathrm{HF}]=0.020-x=0.020-0.0035=0.017 \mathrm{M} ; \mathrm{pH}=2.46}
\end{aligned}
$$

Note: When the 5\% assumption fails, use whichever method you are most comfortable with to solve exactly. The method of successive approximations is probably fastest when the percent error is less than $\sim 25 \%$ (unless you have a graphing calculator).
48.

$$
\mathrm{HClO}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{ClO}_{2}^{-} \quad \mathrm{K}_{\mathrm{a}}=1.2 \times 10^{-2}
$$

Initial $0.22 \mathrm{M} \quad \sim 0 \quad 0$ $x \mathrm{~mol} / \mathrm{L} \mathrm{HClO}_{2}$ dissociates to reach equilibrium
$\begin{array}{llll}\text { Change } & -x & \rightarrow & +x \\ \text { Equil } & 0.22-x & x & +x \\ x\end{array}$
Equil. $0.22-x \quad x \quad x$
$\mathrm{K}_{\mathrm{a}}=1.2 \times 10^{-2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{ClO}_{2}{ }^{-}\right]}{\left[\mathrm{HClO}_{2}\right]}=\frac{x^{2}}{0.22-x} \approx \frac{x^{2}}{0.22}, x=5.1 \times 10^{-2}$
The assumption that x is small is not good (x is 23% of 0.22). Using the method of successive approximations and carrying extra significant figures:

$$
\begin{aligned}
& \frac{x^{2}}{0.22-0.051} \approx \frac{x^{2}}{0.169}=1.2 \times 10^{-2}, x=4.5 \times 10^{-2} \\
& \frac{x^{2}}{0.175}=1.2 \times 10^{-2}, x=4.6 \times 10^{-2}(\text { consistent answer })
\end{aligned}
$$

$\left[\mathrm{H}^{+}\right]=\left[\mathrm{ClO}_{2}{ }^{-}\right]=x=4.6 \times 10^{-2} \mathrm{M}$; percent dissociation $=\frac{4.6 \times 10^{-2}}{0.22} \times 100=21 \%$
49.

$$
\left[\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}\right]=\frac{2 \text { tablets } \times \frac{0.325 \mathrm{~g} \mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}}{\text { tablet }} \times \frac{1 \mathrm{molHC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}}{180.15 \mathrm{~g}}}{0.237 \mathrm{~L}}=0.0152 \mathrm{M}
$$

$$
\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{4}^{-}
$$

Initial $0.0152 M \quad \sim 0 \quad 0$ $x \mathrm{~mol} / \mathrm{L} \mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$ dissociates to reach equilibrium

Change	$-x$	\rightarrow	$-x$	$-x$
Equil.	$0.0152-x$	x	x	

$$
\mathrm{K}_{\mathrm{a}}=3.3 \times 10^{-4}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{4}^{-}\right]}{\left[\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}\right]}=\frac{x^{2}}{0.0152-x} \approx \frac{x^{2}}{0.0152}, x=2.2 \times 10^{-3} \mathrm{M}
$$

Assumption that $0.0152-x \approx 0.0152$ fails the 5% rule: $\frac{2.2 \times 10^{-3}}{0.0152} \times 100=14 \%$
Using successive approximations or the quadratic equation gives an exact answer of $x=2.1 \times 10^{-3} \mathrm{M}$.

$$
\left[\mathrm{H}^{+}\right]=x=2.1 \times 10^{-3} M ; \mathrm{pH}=-\log \left(2.1 \times 10^{-3}\right)=2.68
$$

50.

$$
\mathrm{HBz} \quad \rightleftharpoons \quad \mathrm{H}^{+}+\mathrm{Bz}^{-} \quad \mathrm{HBz}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}
$$

Initial $\quad C \quad \sim 0 \quad 0 \quad \mathrm{C}=[\mathrm{HBz}]_{0}=$ concentration of HBz that $x \mathrm{~mol} / \mathrm{L} \mathrm{HBz}$ dissociates to reach equilibrium
Change
Equil. $\mathrm{C}-x \quad x \quad x$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{Bz}^{-}\right]}{[\mathrm{HBz}]}=6.4 \times 10^{-5}=\frac{x^{2}}{\mathrm{C}-x} \text {, where } x=\left[\mathrm{H}^{+}\right]
$$

$$
6.4 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\mathrm{C}-\left[\mathrm{H}^{+}\right]} ; \mathrm{pH}=2.80 ;\left[\mathrm{H}^{+}\right]=10^{-2.80}=1.6 \times 10^{-3} \mathrm{M}
$$

$$
\mathrm{C}-1.6 \times 10^{-3}=\frac{\left(1.6 \times 10^{-3}\right)^{2}}{6.4 \times 10^{-5}}=4.0 \times 10^{-2}, \quad \mathrm{C}=\left(4.0 \times 10^{-2}\right)+\left(1.6 \times 10^{-3}\right)=4.2 \times 10^{-2} \mathrm{M}
$$

The molar solubility of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$ is $4.2 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$.

$$
\frac{4.2 \times 10^{-2} \mathrm{molC}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}}{\mathrm{~L}} \times \frac{122.1 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}}{\mathrm{molC}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}} \times 0.100 \mathrm{~L}=0.51 \mathrm{~g} \text { per 100. mL solution }
$$

51. Major species: $\mathrm{HIO}_{3}, \mathrm{H}_{2} \mathrm{O}$; major source of $\mathrm{H}^{+}: \mathrm{HIO}_{3}\left(\right.$ a weak acid, $\left.\mathrm{K}_{\mathrm{a}}=0.17\right)$

	$\mathrm{HIO}_{3} \rightleftharpoons$	H^{+}	$\mathrm{IO}_{3}{ }^{-}$
Initial	$x \mathrm{~mol} / \mathrm{L} \mathrm{HIO}_{3}$ dissociates to reach equilibrium		
Change	$-x \quad \rightarrow$	$+x$	+ x
Equil.	$0.010-x$	x	x
$\mathrm{K}_{\mathrm{a}}=0.1$	$=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{IO}_{3}{ }^{-}\right]}{\left[\mathrm{HIO}_{3}\right]}=$	$\frac{x^{2}}{10-x}$	$x=$

Assumption is horrible (x is more than 400% of 0.010). When the assumption is this poor, it is generally quickest to solve exactly using the quadratic formula (see Appendix 1 in text). Using the quadratic formula and carrying extra significant figures:

$$
\begin{aligned}
& 0.17=\frac{x^{2}}{0.010-x}, x^{2}=0.17(0.010-x), x^{2}+(0.17) x-1.7 \times 10^{-3}=0 \\
& x=\frac{-0.17 \pm\left[(0.17)^{2}-4(1)\left(-1.7 \times 10^{-3}\right)\right]^{1 / 2}}{2(1)}=\frac{-0.17 \pm 0.189}{2}, x=9.5 \times 10^{-3} M \\
& x=9.5 \times 10^{-3} M=\left[\mathrm{H}^{+}\right] ; \mathrm{pH}=-\log \left(9.5 \times 10^{-3}\right)=2.02
\end{aligned}
$$

52. $\quad \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\left(\mathrm{~K}_{\mathrm{a}}=1.3 \times 10^{-5}\right)$ and $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}\right)$ are the major species present. $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$ will be the dominant producer of H^{+}because $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$ is a stronger acid than $\mathrm{H}_{2} \mathrm{O}$. Solving the weak acid problem:

$$
\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-}
$$

Initial $0.100 \mathrm{M} \quad \sim 0$

	$x \mathrm{~mol} / \mathrm{L} \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$	dissociates to reach equilibrium		
Change	$-x$	\rightarrow	$+x$	$+x$
Equil.	$0.100-x$		x	x

$$
\begin{aligned}
\mathrm{K}_{\mathrm{a}} & =1.3 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right]}=\frac{x^{2}}{0.100-x} \approx \frac{x^{2}}{0.100} \\
x & =\left[\mathrm{H}^{+}\right]=1.1 \times 10^{-3} M ; \mathrm{pH}=-\log \left(1.1 \times 10^{-3}\right)=2.96
\end{aligned}
$$

Assumption follows the 5% rule (x is 1.1% of 0.100).

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]=1.1 \times 10^{-3} \mathrm{M} ;\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{H}^{+}\right]=9.1 \times 10^{-12} \mathrm{M}} \\
& {\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right]=0.100-1.1 \times 10^{-3}=0.099 \mathrm{M}} \\
& \text { Percent dissociation }=\frac{\left[\mathrm{H}^{+}\right]}{\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right]_{0}} \times 100=\frac{1.1 \times 10^{-3}}{0.100} \times 100=1.1 \%
\end{aligned}
$$

53. This is a weak acid in water. We must solve a weak acid problem. Let $\mathrm{HBz}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$.
$0.56 \mathrm{~g} \mathrm{HBz} \times \frac{1 \mathrm{molHBz}}{122.1 \mathrm{~g}}=4.6 \times 10^{-3} \mathrm{~mol} ;[\mathrm{HBz}]_{0}=4.6 \times 10^{-3} \mathrm{M}$

$$
\mathrm{HBz} \rightleftharpoons \mathrm{H}^{+}+\mathrm{Bz}^{-}
$$

Initial

$$
4.6 \times 10^{-3} \mathrm{M} \quad \sim 0 \quad 0
$$

$$
x \mathrm{~mol} / \mathrm{L} \mathrm{HBz} \mathrm{dissociates} \mathrm{to} \mathrm{reach} \mathrm{equilibrium}
$$

Change
Equil.

$$
\begin{array}{cccr}
-x & \rightarrow & +x & +x \\
4.6 \times 10^{-3}-x & x & x
\end{array}
$$

$\mathrm{K}_{\mathrm{a}}=6.4 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{Bz}^{-}\right]}{[\mathrm{HBz}]}=\frac{x^{2}}{\left(4.6 \times 10^{-3}-x\right)} \approx \frac{x^{2}}{4.6 \times 10^{-3}}$
$x=\left[\mathrm{H}^{+}\right]=5.4 \times 10^{-4} ; \quad$ check assumptions: $\frac{x}{4.6 \times 10^{-3}} \times 100=\frac{5.4 \times 10^{-4}}{4.6 \times 10^{-3}} \times 100=12 \%$
Assumption is not good (x is 12% of 4.6×10^{-3}). When assumption(s) fail, we must solve exactly using the quadratic formula or the method of successive approximations (see Appendix 1 of text). Using successive approximations:

$$
\begin{aligned}
& \frac{x^{2}}{\left(4.6 \times 10^{-3}\right)-\left(5.4 \times 10^{-4}\right)}=6.4 \times 10^{-5}, x=5.1 \times 10^{-4} \\
& \frac{x^{2}}{\left(4.6 \times 10^{-3}\right)-\left(5.1 \times 10^{-4}\right)}=6.4 \times 10^{-5}, x=5.1 \times 10^{-4} \mathrm{M} \text { (consistent answer) }
\end{aligned}
$$

Thus: $x=\left[\mathrm{H}^{+}\right]=\left[\mathrm{Bz}^{-}\right]=\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}\right]=5.1 \times 10^{-4} \mathrm{M}$
$[\mathrm{HBz}]=\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\right]=4.6 \times 10^{-3}-x=4.1 \times 10^{-3} \mathrm{M}$
$\mathrm{pH}=-\log \left(5.1 \times 10^{-4}\right)=3.29 ; \mathrm{pOH}=14.00-\mathrm{pH}=10.71 ;\left[\mathrm{OH}^{-}\right]=10^{-10.71}=1.9 \times 10^{-11} \mathrm{M}$
54. HClO_{4} is a strong acid with $\left[\mathrm{H}^{+}\right]=0.040 \mathrm{M}$. This equals the $\left[\mathrm{H}^{+}\right]$in the trichloroacetic acid solution. Set up the problem using the K_{a} equilibrium reaction for $\mathrm{CCl}_{3} \mathrm{CO}_{2} \mathrm{H}$.

55. $\quad \mathrm{HX} \rightleftharpoons \mathrm{H}^{+}+\mathrm{X}^{-}$

Initial I $\sim 0 \quad 0 \quad$ where $\mathrm{I}=[\mathrm{HX}]_{0}$

Change	$-x$	\rightarrow	$+x$	$+x$
Equil.	$\mathrm{I}-x$		x	

From the problem, $x=0.25(\mathrm{I})$ and $\mathrm{I}-x=0.30 M$.
$\mathrm{I}-0.25(\mathrm{I})=0.30 M, \mathrm{I}=0.40 M$ and $x=0.25(0.40 M)=0.10 M$
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]}=\frac{x^{2}}{\mathrm{I}-x}=\frac{(0.10)^{2}}{0.30}=0.033$
56. Let $\mathrm{HSac}=\operatorname{saccharin}$ and $\mathrm{I}=[\mathrm{HSac}]_{0}$.

$$
\mathrm{HSac} \rightleftharpoons \mathrm{H}^{+}+\mathrm{Sac}^{-} \quad \mathrm{K}_{\mathrm{a}}=10^{-11.70}=2.0 \times 10^{-12}
$$

Initial I $\sim 0 \quad 0$
Equil. $\mathrm{I}-x$ x x
$\mathrm{K}_{\mathrm{a}}=2.0 \times 10^{-12}=\frac{x^{2}}{\mathrm{I}-x} ; x=\left[\mathrm{H}^{+}\right]=10^{-5.75}=1.8 \times 10^{-6} \mathrm{M}$
$2.0 \times 10^{-12}=\frac{\left(1.8 \times 10^{-6}\right)^{2}}{\mathrm{I}-\left(1.8 \times 10^{-6}\right)}, \quad \mathrm{I}=1.6 \mathrm{M}=[\mathrm{HSac}]_{0}$.
$100.0 \mathrm{~g} \mathrm{HC}_{7} \mathrm{H}_{4} \mathrm{NSO}_{3} \times \frac{1 \mathrm{~mol}}{183.19 \mathrm{~g}} \times \frac{1 \mathrm{~L}}{1.6 \mathrm{~mol}} \times \frac{1000 \mathrm{~mL}}{\mathrm{~L}}=340 \mathrm{~mL}$
57. $\mathrm{pH}=2.77,\left[\mathrm{H}^{+}\right]=10^{-2.77}=1.7 \times 10^{-3} \mathrm{M}$

$$
\mathrm{HOCN} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OCN}^{-}
$$

Initial $0.0100 \quad \sim 0 \quad 0$
$\begin{array}{cccc}\text { Equil. } 0.0100-x & x & x\end{array}$

$$
\begin{aligned}
& x=\left[\mathrm{H}^{+}\right]=\left[\mathrm{OCN}^{-}\right]=1.7 \times 10^{-3} \mathrm{M} ;[\mathrm{HOCN}]=0.0100-x=0.0100-0.0017=0.0083 \mathrm{M} \\
& \mathrm{~K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OCN}^{-}\right]}{[\mathrm{HOCN}]}=\frac{\left(1.7 \times 10^{-3}\right)^{2}}{8.3 \times 10^{-3}}=3.5 \times 10^{-4}
\end{aligned}
$$

58. HF and $\mathrm{HOC}_{6} \mathrm{H}_{5}$ are both weak acids with K_{a} values of 7.2×10^{-4} and 1.6×10^{-10}, respectively. Because the K_{a} value for HF is much greater than the K_{a} value for $\mathrm{HOC}_{6} \mathrm{H}_{5}$, HF will be the dominant producer of H^{+}(we can ignore the amount of H^{+}produced from $\mathrm{HOC}_{6} \mathrm{H}_{5}$ because it will be insignificant).

Solving for $\left[\mathrm{OC}_{6} \mathrm{H}_{5}^{-}\right]$using $\mathrm{HOC}_{6} \mathrm{H}_{5} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OC}_{6} \mathrm{H}_{5}{ }^{-}$equilibrium:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=1.6 \times 10^{-10}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OC}_{6} \mathrm{H}_{5}^{-}\right]}{\left[\mathrm{HOC}_{6} \mathrm{H}_{5}\right]}=\frac{\left(2.7 \times 10^{-2}\right)\left[\mathrm{OC}_{6} \mathrm{H}_{5}^{-}\right]}{1.0}, \\
& {\left[\mathrm{OC}_{6} \mathrm{H}_{5}^{-}\right]=5.9 \times 10^{-9} \mathrm{M}}
\end{aligned}
$$

Note that this answer indicates that only $5.9 \times 10^{-9} \mathrm{M} \mathrm{HOC}_{6} \mathrm{H}_{5}$ dissociates, which indicates that HF is truly the only significant producer of H^{+}in this solution.
59. a. HCl is a strong acid. It will produce $0.10 \mathrm{M} \mathrm{H}^{+}$. HOCl is a weak acid. Let's consider the equilibrium:

$$
\mathrm{HOCl} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OCl}^{-} \quad \mathrm{K}_{\mathrm{a}}=3.5 \times 10^{-8}
$$

Initial $0.10 \mathrm{M} \quad 0.10 \mathrm{M} \quad 0$
$x \mathrm{~mol} / \mathrm{L} \mathrm{HOCl}$ dissociates to reach equilibrium
$\left.\begin{array}{lclcr}\text { Change } & -x \\ \text { Equil. } & 0.10-x\end{array}\right) \quad \begin{gathered}+x \\ 0.10+x\end{gathered} \quad x$
$\mathrm{K}_{\mathrm{a}}=3.5 \times 10^{-8}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OCl}^{-}\right]}{[\mathrm{HOCl}]}=\frac{(0.10+x)(x)}{0.10-x} \approx x, x=3.5 \times 10^{-8} \mathrm{M}$
Assumptions are great (x is 0.000035% of 0.10). We are really assuming that HCl is the only important source of H^{+}, which it is. The $\left[\mathrm{H}^{+}\right]$contribution from HOCl, x, is negligible. Therefore, $\left[\mathrm{H}^{+}\right]=0.10 \mathrm{M} ; \mathrm{pH}=1.00$.
b. HNO_{3} is a strong acid, giving an initial concentration of H^{+}equal to 0.050 M . Consider the equilibrium:

Initial

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}^{+} \quad+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \quad \mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}
$$

Initial

$$
\begin{array}{lll}
0.50 M & 0.050 M & 0
\end{array}
$$

$x \mathrm{~mol} / \mathrm{L} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ dissociates to reach equilibrium

Change	$-x$	\rightarrow	$+x$
Equil.	$0.50-x$		$0.050+x$
E		x	

$$
\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}=\frac{(0.050+x) x}{(0.50-x)} \approx \frac{(0.050) x}{0.50}
$$

$x=1.8 \times 10^{-4}$; assumptions are good (well within the 5% rule).
$\left[\mathrm{H}^{+}\right]=0.050+x=0.050 \mathrm{M}$ and $\mathrm{pH}=1.30$
60. In all parts of this problem, acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$ is the best weak acid present. We must solve a weak acid problem.
a.

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightleftharpoons \quad \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}
$$

Initial	0.50 M		~ 0
	$x \mathrm{~mol} / \mathrm{L}$	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	0
dissociates			
Change	$-x$	\rightarrow	$+x$

$\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}=\frac{x^{2}}{0.50-x} \approx \frac{x^{2}}{0.50}$
$x=\left[\mathrm{H}^{+}\right]=\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]=3.0 \times 10^{-3} \mathrm{M} ;$ assumptions good.
Percent dissociation $=\frac{\left[\mathrm{H}^{+}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]_{0}} \times 100=\frac{3.0 \times 10^{-3}}{0.50} \times 100=0.60 \%$
b. The setup for solutions b and c are similar to solution a except that the final equation is different because the new concentration of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is different.
$\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}=\frac{x^{2}}{0.050-x} \approx \frac{x^{2}}{0.050}$
$x=\left[\mathrm{H}^{+}\right]=\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]=9.5 \times 10^{-4} \mathrm{M}$; assumptions good.
Percent dissociation $=\frac{9.5 \times 10^{-4}}{0.050} \times 100=1.9 \%$
c. $\quad \mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}=\frac{x^{2}}{0.0050-x} \approx \frac{x^{2}}{0.0050}$
$x=\left[\mathrm{H}^{+}\right]=\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]=3.0 \times 10^{-4} \mathrm{M}$; check assumptions.
Assumption that x is negligible is borderline (6.0% error). We should solve exactly. Using the method of successive approximations (see Appendix 1 of the text):

$$
1.8 \times 10^{-5}=\frac{x^{2}}{0.0050-\left(3.0 \times 10^{-4}\right)}=\frac{x^{2}}{0.0047}, x=2.9 \times 10^{-4}
$$

Next trial also gives $x=2.9 \times 10^{-4}$.

Percent dissociation $=\frac{2.9 \times 10^{-4}}{5.0 \times 10^{-3}} \times 100=5.8 \%$
d. As we dilute a solution, all concentrations are decreased. Dilution will shift the equilibrium to the side with the greater number of particles. For example, suppose we double the volume of an equilibrium mixture of a weak acid by adding water; then:

$$
\mathrm{Q}=\frac{\left(\frac{\left[\mathrm{H}^{+}\right]_{\mathrm{eq}}}{2}\right)\left(\frac{\left[\mathrm{X}^{-}\right]_{\mathrm{eq}}}{2}\right)}{\left(\frac{[\mathrm{HX}]_{\mathrm{eq}}}{2}\right)}=\frac{1}{2} \mathrm{~K}_{\mathrm{a}}
$$

$\mathrm{Q}<\mathrm{K}_{\mathrm{a}}$, so the equilibrium shifts to the right or toward a greater percent dissociation.
e. $\left[\mathrm{H}^{+}\right]$depends on the initial concentration of weak acid and on how much weak acid dissociates. For solutions a-c, the initial concentration of acid decreases more rapidly than the percent dissociation increases. Thus $\left[\mathrm{H}^{+}\right]$decreases.
61. Major species: $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (acetic acid) and $\mathrm{H}_{2} \mathrm{O}$; major source of $\mathrm{H}^{+}: \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}
$$

Initial $\mathrm{C} \quad \sim 0 \quad 0 \quad$ where $\mathrm{C}=\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]_{0}$ $x \mathrm{~mol} / \mathrm{L} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ dissociates to reach equilibrium

Change	$-x$	\rightarrow	$+x$	$+x$
Equil.	$\mathrm{C}-x$		x	x

$\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}=\frac{x^{2}}{\mathrm{C}-x}$, where $x=\left[\mathrm{H}^{+}\right]$
$1.8 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\mathrm{C}-\left[\mathrm{H}^{+}\right]}$; from $\mathrm{pH}=3.0:\left[\mathrm{H}^{+}\right]=10^{-3.0}=1 \times 10^{-3} \mathrm{M}$
$1.8 \times 10^{-5}=\frac{\left(1 \times 10^{-3}\right)^{2}}{\mathrm{C}-\left(1 \times 10^{-3}\right)}, \mathrm{C}-\left(1 \times 10^{-3}\right)=\frac{1 \times 10^{-6}}{1.8 \times 10^{-5}}, \mathrm{C}=5.7 \times 10^{-2} \approx 6 \times 10^{-2} \mathrm{M}$
A $6 \times 10^{-2} M$ acetic acid solution will have $\mathrm{pH}=3.0$.
62. Let HA symbolize the weak acid. Set up the problem like a typical weak acid equilibrium problem.

Initial $0.15 \mathrm{M} \quad \sim 0 \quad 0$ $x \mathrm{~mol} / \mathrm{L}$ HA dissociates to reach equilibrium
$\begin{array}{lclrr}\text { Change } & -x & \rightarrow & +x & +x \\ \text { Equil. } & 0.15-x\end{array}$

If the acid is 3.0% dissociated, then $x=\left[\mathrm{H}^{+}\right]$is 3.0% of $0.15: x=0.030 \times(0.15 M)=$ $4.5 \times 10^{-3} \mathrm{M}$. Now that we know the value of x, we can solve for K_{a}.
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{x^{2}}{0.15-x}=\frac{\left(4.5 \times 10^{-3}\right)^{2}}{0.15-\left(4.5 \times 10^{-3}\right)}=1.4 \times 10^{-4}$

Solutions of Bases

63.

a. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
b. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
c. OH^{-}
d. $\mathrm{CH}_{3} \mathrm{NH}_{2}$

The base with the largest K_{b} value is the strongest base $\left(\mathrm{K}_{\mathrm{b}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}}=3.8 \times 10^{-10}\right.$, $\left.\mathrm{K}_{\mathrm{b}, \mathrm{CH}_{3} \mathrm{NH}_{2}}=4.4 \times 10^{-4}\right) . \mathrm{OH}^{-}$is the strongest base possible in water.
64.
a. HClO_{4} (a strong acid)
b. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$
c. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$

The acid with the largest K_{a} value is the strongest acid. To calculate K_{a} values for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$and $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$, use $\mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{b}}$, where K_{b} refers to the bases $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ or $\mathrm{CH}_{3} \mathrm{NH}_{2}$.
65. $\mathrm{pH}=10.50 ; \mathrm{pOH}=14.00-10.50=3.50 ;\left[\mathrm{OH}^{-}\right]=10^{-3.50}=3.2 \times 10^{-4} \mathrm{M}$
$\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) ; \mathrm{Ba}(\mathrm{OH})_{2}$ donates $2 \mathrm{~mol} \mathrm{OH}^{-}$per mol Ba(OH$)_{2}$.
$\left[\mathrm{Ba}(\mathrm{OH})_{2}\right]=3.2 \times 10^{-4} \mathrm{M} \mathrm{OH}^{-} \times \frac{1 M \mathrm{Ba}(\mathrm{OH})_{2}}{2 M \mathrm{OH}^{-}}=1.6 \times 10^{-4} \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$
A $1.6 \times 10^{-4} \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution will produce a $\mathrm{pH}=10.50$ solution.
66. a. $\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-} ; \mathrm{Ca}(\mathrm{OH})_{2}$ is a strong base and dissociates completely.

$$
\begin{array}{r}
{\left[\mathrm{OH}^{-}\right]=2(0.00040)=8.0 \times 10^{-4} \mathrm{M} ; \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=3.10 ; \mathrm{pH}=14.00-\mathrm{pOH}} \\
=10.90
\end{array}
$$

b. $\frac{25 \mathrm{~g} \mathrm{KOH}}{\mathrm{L}} \times \frac{1 \mathrm{~mol} \mathrm{KOH}}{56.1 \mathrm{~g} \mathrm{KOH}}=0.45 \mathrm{~mol} \mathrm{KOH} / \mathrm{L}$

KOH is a strong base, so $\left[\mathrm{OH}^{-}\right]=0.45 \mathrm{M} ; \mathrm{pOH}=-\log (0.45)=0.35 ; \mathrm{pH}=13.65$
c. $\frac{150.0 \mathrm{~g} \mathrm{NaOH}}{\mathrm{L}} \times \frac{1 \mathrm{~mol}}{40.00 \mathrm{~g}}=3.750 \mathrm{M} ; \mathrm{NaOH}$ is a strong base, so $\left[\mathrm{OH}^{-}\right]=3.750 \mathrm{M}$.

$$
\mathrm{pOH}=-\log (3.750)=-0.5740 \text { and } \mathrm{pH}=14.0000-(-0.5740)=14.5740
$$

Although we are justified in calculating the answer to four decimal places, in reality the pH can only be measured to $\pm 0.01 \mathrm{pH}$ units.
67. $\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) ; \mathrm{NaOH}$ is a strong base that completely dissociates into Na^{+}and OH^{-}. The initial concentration of NaOH will equal the concentration of OH^{-} donated by NaOH .
a. $\left[\mathrm{OH}^{-}\right]=0.10 \mathrm{M} ; \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log (0.10)=1.00$
$\mathrm{pH}=14.00-\mathrm{pOH}=14.00-1.00=13.00$
Note that $\mathrm{H}_{2} \mathrm{O}$ is also present, but the amount of OH^{-}produced by $\mathrm{H}_{2} \mathrm{O}$ will be insignificant compared to the $0.10 \mathrm{M} \mathrm{OH}^{-}$produced from the NaOH .
b. The $\left[\mathrm{OH}^{-}\right]$concentration donated by the NaOH is $1.0 \times 10^{-10} \mathrm{M}$. Water by itself donates $1.0 \times 10^{-7} \mathrm{M}$. In this exercise, water is the major OH^{-}contributor, and $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}$.

$$
\mathrm{pOH}=-\log \left(1.0 \times 10^{-7}\right)=7.00 ; \mathrm{pH}=14.00-7.00=7.00
$$

c. $\left[\mathrm{OH}^{-}\right]=2.0 \mathrm{M} ; \mathrm{pOH}=-\log (2.0)=-0.30 ; \mathrm{pH}=14.00-(-0.30)=14.30$
68. $\mathrm{pOH}=14.00-11.56=2.44 ;\left[\mathrm{OH}^{-}\right]=[\mathrm{KOH}]=10^{-2.44}=3.6 \times 10^{-3} \mathrm{M}$
$0.8000 \mathrm{~L} \times \frac{3.6 \times 10^{-3} \mathrm{~mol} \mathrm{KOH}}{\mathrm{L}} \times \frac{56.1 \mathrm{~g} \mathrm{KOH}}{\mathrm{mol} \mathrm{KOH}}=0.16 \mathrm{~g} \mathrm{KOH}$
69. $\mathrm{NO}_{3}^{-}: \mathrm{K}_{\mathrm{b}} \ll \mathrm{K}_{\mathrm{w}}$ because HNO_{3} is a strong acid. All conjugate bases of strong acids have no base strength in water. $\mathrm{H}_{2} \mathrm{O}: \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14} ; \mathrm{NH}_{3}: \mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5} ; \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}: \mathrm{K}_{\mathrm{b}}=1.7$ $\times 10^{-9}$
Base strength $=\mathrm{NH}_{3}>\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}>\mathrm{H}_{2} \mathrm{O}>\mathrm{NO}_{3}^{-}\left(\right.$As K_{b} increases, base strength increases. $)$
70. Excluding water, these are the conjugate acids of the bases in the preceding exercise. In general, the stronger the base, the weaker is the conjugate acid. Note: Even though $\mathrm{NH}_{4}{ }^{+}$and $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$are conjugate acids of weak bases, they are still weak acids with K_{a} values between K_{w} and 1. Prove this to yourself by calculating the K_{a} values for $\mathrm{NH}_{4}{ }^{+}$and $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}\left(\mathrm{K}_{\mathrm{a}}=\right.$ $\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{b}}$).

Acid strength: $\mathrm{HNO}_{3}>\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}>\mathrm{NH}_{4}{ }^{+}>\mathrm{H}_{2} \mathrm{O}$
71. Neutrally charged organic compounds containing at least one nitrogen atom generally behave as weak bases. The nitrogen atom has an unshared pair of electrons around it. This lone pair of electrons is used to form a bond to H^{+}.
72. These are solutions of weak bases in water.

a.	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O}$	\rightleftharpoons	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}+$	OH^{-}	$\mathrm{K}_{\mathrm{b}}=3.8 \times 10^{-10}$
Initial	$0.40 M$		0	~ 0	
	$x \mathrm{~mol} / \mathrm{L}$ of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	reacts	with $\mathrm{H}_{2} \mathrm{O}$	to reach equilibrium	
Change	$-x$	\rightarrow	$+x$	$+x$	
Equil.	$0.40-x$		x	x	

$3.8 \times 10^{-10}=\frac{x^{2}}{0.40-x} \approx \frac{x^{2}}{0.40}, x=\left[\mathrm{OH}^{-}\right]=1.2 \times 10^{-5} M ;$ assumptions good.
$\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=8.3 \times 10^{-10} \mathrm{M} ; \mathrm{pH}=9.08$
b.

$$
\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=4.38 \times 10^{-4}
$$

$\begin{array}{lllr}\text { Initial } & 0.40 M & 0 & \sim 0 \\ \text { Equil. } & 0.40-x & x & x\end{array}$
$\mathrm{K}_{\mathrm{b}}=4.38 \times 10^{-4}=\frac{x^{2}}{0.40-x} \approx \frac{x^{2}}{0.40}, x=1.3 \times 10^{-2} M ;$ assumptions good.
$\left[\mathrm{OH}^{-}\right]=1.3 \times 10^{-2} \mathrm{M} ;\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=7.7 \times 10^{-13} \mathrm{M} ; \mathrm{pH}=12.11$
73. This is a solution of a weak base in water. We must solve a weak base equilibrium problem.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=5.6 \times 10^{-4}
$$

Initial
0.20 M

0

~ 0
$x \mathrm{~mol} / \mathrm{L} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$ reacts with $\mathrm{H}_{2} \mathrm{O}$ to reach equilibrium

Change	$-x$	\rightarrow	$+x$	$+x$
Equil.	$0.20-x$		x	x

$\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\right]}=\frac{x^{2}}{0.20-x} \approx \frac{x^{2}}{0.20} \quad$ (assuming $\left.x \ll 0.20\right)$
$x=1.1 \times 10^{-2}$; checking assumption: $\left(1.1 \times 10^{-2} / 0.20\right) \times 100=5.5 \%$
The assumption fails the 5% rule. We must solve exactly using either the quadratic equation or the method of successive approximations (see Appendix 1 of the text).
Using successive approximations and carrying extra significant figures:

$$
\begin{aligned}
& \frac{x^{2}}{0.20-0.011}=\frac{x^{2}}{0.189}=5.6 \times 10^{-4}, x=1.0 \times 10^{-2} M \text { (consistent answer) } \\
x= & {\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-2} M ;\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}=\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-2}}=1.0 \times 10^{-12} M ; \mathrm{pH}=12.00 }
\end{aligned}
$$

74.

$$
\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}_{2}^{+}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=1.3 \times 10^{-3}
$$

Initial $0.050 \mathrm{M} \quad 0 \quad \sim 0$
$x \mathrm{~mol} / \mathrm{L}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$ reacts with $\mathrm{H}_{2} \mathrm{O}$ to reach equilibrium
$\begin{array}{lclrr}\text { Change } & -x & \rightarrow & +x & +x \\ \text { Equil. } & 0.050-x & & x & x\end{array}$
$\mathrm{K}_{\mathrm{b}}=1.3 \times 10^{-3}=\frac{\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}_{2}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}\right]}=\frac{x^{2}}{0.050-x} \approx \frac{x^{2}}{0.050}$
$x=8.1 \times 10^{-3}$; assumption is bad (x is 16% of 0.20).

Using successive approximations:

$$
\begin{aligned}
1.3 & \times 10^{-3}=\frac{x^{2}}{0.050-0.081}, \quad x=7.4 \times 10^{-3} \\
1.3 & \times 10^{-3}=\frac{x^{2}}{0.050-0.074}, \quad x=7.4 \times 10^{-3} \text { (consistent answer) } \\
{\left[\mathrm{OH}^{-}\right]=x=7.4 } & \times 10^{-3} \mathrm{M} ;\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=1.4 \times 10^{-12} \mathrm{M} ; \mathrm{pH}=11.85
\end{aligned}
$$

75. Major species: $\mathrm{H}_{2} \mathrm{NNH}_{2}\left(\mathrm{~K}_{\mathrm{b}}=3.0 \times 10^{-6}\right)$ and $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}\right)$; the weak base $\mathrm{H}_{2} \mathrm{NNH}_{2}$ will dominate OH^{-}production. We must perform a weak base equilibrium calculation.

$$
\mathrm{H}_{2} \mathrm{NNH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{NNH}_{3}{ }^{+}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=3.0 \times 10^{-6}
$$

Initial $2.0 \mathrm{M} \quad 0 \quad \sim 0$
$x \mathrm{~mol} / \mathrm{L} \mathrm{H}_{2} \mathrm{NNH}_{2}$ reacts with $\mathrm{H}_{2} \mathrm{O}$ to reach equilibrium
$\begin{array}{lllrr}\text { Change } & -x & \rightarrow & +x & +x \\ \text { Equil. } & 2.0-x & & x & x\end{array}$
$\mathrm{K}_{\mathrm{b}}=3.0 \times 10^{-6}=\frac{\left[\mathrm{H}_{2} \mathrm{NNH}_{3}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{NNH}_{2}\right]}=\frac{x^{2}}{2.0-x} \approx \frac{x^{2}}{2.0} \quad($ assuming $x \ll 2.0)$
$x=\left[\mathrm{OH}^{-}\right]=2.4 \times 10^{-3} \mathrm{M} ; \mathrm{pOH}=2.62 ; \mathrm{pH}=11.38 ;$ assumptions $\operatorname{good}(x$ is 0.12% of 2.0$)$.
$\left[\mathrm{H}_{2} \mathrm{NNH}_{3}{ }^{+}\right]=2.4 \times 10^{-3} \mathrm{M} ;\left[\mathrm{H}_{2} \mathrm{NNH}_{2}\right]=2.0 \mathrm{M} ;\left[\mathrm{H}^{+}\right]=10^{-11.38}=4.2 \times 10^{-12} \mathrm{M}$
76.

$$
\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}^{+}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=1.7 \times 10^{-9}
$$

Initial $0.10 \mathrm{M} \quad 0 \quad \sim 0$
Equil. $0.10-x \quad x \quad x$
$\mathrm{K}_{\mathrm{b}}=1.7 \times 10^{-9}=\frac{x^{2}}{0.10-x} \approx \frac{x^{2}}{0.10}, x=\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right]=1.3 \times 10^{-5} \mathrm{M} ;$ assumptions good.
Percent $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ ionized $=\frac{1.3 \times 10^{-5} \mathrm{M}}{0.10 \mathrm{M}} \times 100=1.3 \times 10^{-2} \%$
77. $\frac{5.0 \times 10^{-3} \mathrm{~g}}{0.0100 \mathrm{~L}} \times \frac{1 \mathrm{~mol}}{299.4 \mathrm{~g}}=1.7 \times 10^{-3} \mathrm{M}=[\text { codeine }]_{0} ;$ let $\operatorname{cod}=\operatorname{codeine}\left(\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}\right)$.

Solving the weak base equilibrium problem:

	$\operatorname{cod}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$	codH^{+}	$+\mathrm{OH}^{-}$	$\mathrm{K}_{\mathrm{b}}=10^{-6.05}=8.9 \times 10^{-7}$
Initial	$1.7 \times 10^{-3} M$		0	~ 0
	$x \mathrm{~mol} / \mathrm{L}$ codeine reacts with $\mathrm{H}_{2} \mathrm{O}$ to reach equilibrium			
Change	$-x$	\rightarrow	$+x$	$+x$
Equil.	$1.7 \times 10^{-3}-x$	x	x	

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{b}}=8.9 \times 10^{-7}=\frac{x^{2}}{\left(1.7 \times 10^{-3}-x\right)} \approx \frac{x^{2}}{1.7 \times 10^{-3}}, x=3.9 \times 10^{-5} ; \quad \text { assumptions good. } \\
& {\left[\mathrm{OH}^{-}\right]=3.9 \times 10^{-5} M ;\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=2.6 \times 10^{-10} M ; \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=9.59}
\end{aligned}
$$

78. \quad Codeine $=\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3} ;$ codeine sulfate $=\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}$

The formula for codeine sulfate works out to (codeine $\left.\mathrm{H}^{+}\right)_{2} \mathrm{SO}_{4}{ }^{2-}$, where codeine $\mathrm{H}^{+}=$ $\mathrm{HC}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}{ }^{+}$. Two codeine molecules are protonated by $\mathrm{H}_{2} \mathrm{SO}_{4}$, forming the conjugate acid of codeine. The $\mathrm{SO}_{4}{ }^{2-}$ then acts as the counter ion to give a neutral compound. Codeine sulfate is an ionic compound that is more soluble in water than codeine, allowing more of the drug into the bloodstream.
79. Using the K_{b} reaction to solve where $\mathrm{PT}=\mathrm{p}$-toluidine $\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}\right)$:

$$
\mathrm{PT}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{PTH}^{+}+\mathrm{OH}^{-}
$$

Initial $0.016 \mathrm{M} 00 \sim 0$

	$x \mathrm{~mol} / \mathrm{L}$ of PT reacts with $\mathrm{H}_{2} \mathrm{O}$ to reach equilibrium			
Change	$-x$	\rightarrow	$+x$	$+x$
Equil.	$0.016-x$		x	x

$\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{PTH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{PT}]}=\frac{x^{2}}{0.016-x}$
Since $\mathrm{pH}=8.60: \mathrm{pOH}=14.00-8.60=5.40$ and $\left[\mathrm{OH}^{-}\right]=x=10^{-5.40}=4.0 \times 10^{-6} \mathrm{M}$
$\mathrm{K}_{\mathrm{b}}=\frac{\left(4.0 \times 10^{-6}\right)^{2}}{0.016-\left(4.0 \times 10^{-6}\right)}=1.0 \times 10^{-9}$
80. $\mathrm{HONH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HONH}_{3}{ }^{+}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=1.1 \times 10^{-8}$

Initial	I	0	~ 0	$\mathrm{I}=\left[\mathrm{HONH}_{2}\right]_{0}$
Equil.	$\mathrm{I}-x$	x	x	

$\mathrm{K}_{\mathrm{b}}=1.1 \times 10^{-8}=\frac{x^{2}}{\mathrm{I}-x}$
From problem, $\mathrm{pH}=10.00$, so $\mathrm{pOH}=4.00$ and $x=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-4} \mathrm{M}$.
$1.1 \times 10^{-8}=\frac{\left(1.0 \times 10^{-4}\right)^{2}}{\mathrm{I}-\left(1.0 \times 10^{-4}\right)}, \quad \mathrm{I}=0.91 \mathrm{M}$
Mass $\mathrm{HONH}_{2}=0.2500 \mathrm{~L} \times \frac{0.91 \mathrm{~mol} \mathrm{HONH}_{2}}{\mathrm{~L}} \times \frac{33.03 \mathrm{~g} \mathrm{HONH}_{2}}{\mathrm{molHONH}_{2}}=7.5 \mathrm{~g} \mathrm{HONH}_{2}$
81. To solve for percent ionization, just solve the weak base equilibrium problem.
a.

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}
$$

Initial $0.10 M \quad 0 \quad \sim 0$
Equil. $0.10-x \quad x \quad x$
$\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}=\frac{x^{2}}{0.10-x} \approx \frac{x^{2}}{0.10}, x=\left[\mathrm{OH}^{-}\right]=1.3 \times 10^{-3} \mathrm{M} ;$ assumptions good.
Percent ionization $=\frac{\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]_{0}} \times 100=\frac{1.3 \times 10^{-3} \mathrm{M}}{0.10 \mathrm{M}} \times 100=1.3 \%$
b.

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

$\begin{array}{lllr}\text { Initial } & 0.010 M & 0 & \sim 0 \\ \text { Equil. } & 0.010-x & x & x\end{array}$
$1.8 \times 10^{-5}=\frac{x^{2}}{0.010-x} \approx \frac{x^{2}}{0.010}, x=\left[\mathrm{OH}^{-}\right]=4.2 \times 10^{-4} \mathrm{M}$; assumptions good.
Percent ionization $=\frac{4.2 \times 10^{-4}}{0.010} \times 100=4.2 \%$
Note: For the same base, the percent ionization increases as the initial concentration of base decreases.
c.

$$
\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=4.38 \times 10^{-4}
$$

Initial $0.10 M \quad 0 \quad \sim 0$
Equil. $0.10-x \quad x \quad x$
$4.38 \times 10^{-4}=\frac{x^{2}}{0.10-x} \approx \frac{x^{2}}{0.10}, x=6.6 \times 10^{-3} ;$ assumption fails the 5% rule $(x$ is
6.6% of 0.10). Using successive approximations and carrying extra significant figures:

$$
\begin{aligned}
& \quad \frac{x^{2}}{0.10-0.0066}=\frac{x^{2}}{0.093}=4.38 \times 10^{-4}, x=6.4 \times 10^{-3} \quad(\text { consistent answer }) \\
& \text { Percent ionization }=\frac{6.4 \times 10^{-3}}{0.10} \times 100=6.4 \%
\end{aligned}
$$

82. $\frac{1.0 \mathrm{~g} \text { quinine }}{1.9000 \mathrm{~L}} \times \frac{1 \text { mol quinine }}{324.4 \mathrm{~g} \text { quinine }}=1.6 \times 10^{-3} \mathrm{M}$ quinine; let $\mathrm{Q}=$ quinine $=\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$.

$$
\mathrm{Q}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{QH}^{+}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=10^{-5.1}=8 \times 10^{-6}
$$

Initial	$1.6 \times 10^{-3} \mathrm{M}$
	$x \mathrm{~mol} / \mathrm{L}$ quinine reacts with $\mathrm{H}_{2} \mathrm{O}$ to reach equilibrium

Change	$-x$	\rightarrow	$+x$	$+x$
Equil.	$1.6 \times 10^{-3}-x$		x	x

$\mathrm{K}_{\mathrm{b}}=8 \times 10^{-6}=\frac{\left[\mathrm{QH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{Q}]}=\frac{x^{2}}{\left(1.6 \times 10^{-3}-x\right)} \approx \frac{x^{2}}{1.6 \times 10^{-3}}$
$x=1 \times 10^{-4}$; assumption fails 5% rule (x is 6% of 0.0016). Using successive approximations:

$$
\begin{aligned}
& \frac{x^{2}}{\left(1.6 \times 10^{-3}-1 \times 10^{-4}\right)}=8 \times 10^{-6}, x=1 \times 10^{-4} M \text { (consistent answer) } \\
x= & {\left[\mathrm{OH}^{-}\right]=1 \times 10^{-4} M ; \mathrm{pOH}=4.0 ; \mathrm{pH}=10.0 }
\end{aligned}
$$

Polyprotic Acids

83. The dominant H^{+}producer is the strong acid $\mathrm{H}_{2} \mathrm{SO}_{4}$. A $2.0 M \mathrm{H}_{2} \mathrm{SO}_{4}$ solution produces 2.0 M HSO_{4}^{-}and $2.0 \mathrm{M} \mathrm{H}^{+}$. However, HSO_{4}^{-}is a weak acid that could also add H^{+}to the solution.

	$\mathrm{HSO}_{4}{ }^{-}$	\rightleftharpoons	H^{+}	$\mathrm{SO}_{4}{ }^{2-}$
Initial	$\begin{aligned} & 2.0 \mathrm{M} \\ & x \mathrm{~mol} / \mathrm{L} \end{aligned}$	$\mathrm{O}_{4}^{-}{ }^{-} \mathrm{di}$	2.0 M ociates to	$\stackrel{0}{0}$
Change	-x	\rightarrow	+ x	+ x
Equil.	$2.0-x$		$2.0+x$	x
$\mathrm{K}_{\mathrm{a}_{2}}=1.2 \times 10^{-2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]}{\left[\mathrm{HSO}_{4}{ }^{-}\right]}=\frac{(2.0+x) x}{2.0-x} \approx \frac{2.0(x)}{2.0}$				

Because x is 0.60% of 2.0 , the assumption is valid by the 5% rule. The amount of additional H^{+}from HSO_{4}^{-}is $1.2 \times 10^{-2} \mathrm{M}$. The total amount of H^{+}present is:

$$
\left[\mathrm{H}^{+}\right]=2.0+\left(1.2 \times 10^{-2}\right)=2.0 \mathrm{M} ; \mathrm{pH}=-\log (2.0)=-0.30
$$

Note: In this problem H^{+}from HSO_{4}^{-}could have been ignored. However, this is not usually the case in more dilute solutions of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
84. For $\mathrm{H}_{2} \mathrm{SO}_{4}$, the first dissociation occurs to completion. The hydrogen sulfate ion, HSO_{4}^{-}, is a weak acid with $\mathrm{K}_{\mathrm{a}_{2}}=1.2 \times 10^{-2}$. We will consider this equilibrium for additional H^{+} production:

	HSO_{4}^{-}	\rightleftharpoons	H^{+}	+
		$\mathrm{SO}_{4}{ }^{2-}$		
Initial	0.0050 M		0.0050 M	0
	$x \mathrm{~mol} / \mathrm{L} \mathrm{HSO}_{4}{ }^{-}$	dissociates to reach equilibrium		
Change	$-x$	\rightarrow	$+x$	$+x$
Equil.	$0.0050-x$		$0.0050+x$	x

$$
\mathrm{K}_{\mathrm{a}_{2}}=0.012=\frac{(0.0050+x) x}{0.0050-x} \approx x, x=0.012 ; \text { assumption is horrible (} 240 \% \text { error). }
$$

Using the quadratic formula:

$$
\begin{aligned}
& 6.0 \times 10^{-5}-(0.012) x=x^{2}+(0.0050) x, x^{2}+(0.017) x-6.0 \times 10^{-5}=0 \\
& x=\frac{-0.017 \pm\left(2.9 \times 10^{-4}+2.4 \times 10^{-4}\right)^{1 / 2}}{2}=\frac{-0.017 \pm 0.023}{2}, x=3.0 \times 10^{-3} \mathrm{M}
\end{aligned}
$$

$$
\left[\mathrm{H}^{+}\right]=0.0050+x=0.0050+0.0030=0.0080 \mathrm{M} ; \mathrm{pH}=2.10
$$

Note: We had to consider both $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{HSO}_{4}{ }^{-}$for H^{+}production in this problem.
85. $\quad \mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$

$$
\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{2-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})
$$

$$
\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{2-}(\mathrm{aq}) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{3-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})
$$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}_{1}}=\frac{\left[\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right]} \\
& \mathrm{K}_{\mathrm{a}_{2}}=\frac{\left[\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{2-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}{ }^{-}\right]} \\
& \mathrm{K}_{\mathrm{a}_{3}}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{3-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{2-}\right]}
\end{aligned}
$$

86. $\mathrm{H}_{2} \mathrm{CO}_{3}$ is a weak acid with $\mathrm{K}_{\mathrm{a}_{1}}=4.3 \times 10^{-7}$ and $\mathrm{K}_{\mathrm{a}_{2}}=4.8 \times 10^{-11}$. The $\left[\mathrm{H}^{+}\right]$concentration in solution will be determined from the $K_{a_{1}}$ reaction because $K_{a_{1}} \gg \mathrm{~K}_{a_{2}}$. Because $K_{a_{1}} \ll 1$, the $\left[\mathrm{H}^{+}\right]<0.10 \mathrm{M}$; only a small percentage of the $0.10 M \mathrm{H}_{2} \mathrm{CO}_{3}$ will dissociate into $\mathrm{HCO}_{3}{ }^{-}$ and H^{+}. So statement a best describes the $0.10 M \mathrm{H}_{2} \mathrm{CO}_{3}$ solution. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a strong acid as well as a very good weak acid ($\mathrm{K}_{\mathrm{a}_{1}} \gg 1$, $\mathrm{K}_{\mathrm{a}_{2}}=1.2 \times 10^{-2}$). All of the $0.10 M \mathrm{H}_{2} \mathrm{SO}_{4}$ solution will dissociate into $0.10 \mathrm{M} \mathrm{H}^{+}$and $0.10 \mathrm{M} \mathrm{HSO}_{4}^{-}$. However, because HSO_{4}^{-}is a good weak acid due to the relatively large K_{a} value, some of the $0.10 \mathrm{M} \mathrm{HSO}_{4}{ }^{-}$will dissociate into some more H^{+}and $\mathrm{SO}_{4}{ }^{2-}$. Therefore, the $\left[\mathrm{H}^{+}\right]$will be greater than 0.10 M but will not reach 0.20 M because only some of $0.10 \mathrm{M}_{\mathrm{HSO}_{4}{ }^{-}}$will dissociate. Statement c is best for a $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution.
87. The reactions are:

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{AsO}_{4} \rightleftharpoons \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{AsO}_{4}^{-} \quad \mathrm{K}_{\mathrm{a}_{1}}=5 \times 10^{-3} \\
& \mathrm{H}_{2} \mathrm{AsO}_{4}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HAsO}_{4}^{2-} \quad \mathrm{K}_{\mathrm{a}_{2}}=8 \times 10^{-8} \\
& \mathrm{HAsO}_{4}{ }^{2-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{AsO}_{4}{ }^{3-} \quad \mathrm{K}_{\mathrm{a}_{3}}=6 \times 10^{-10}
\end{aligned}
$$

We will deal with the reactions in order of importance, beginning with the largest $K_{a}, K_{a_{1}}$.

$$
\mathrm{H}_{3} \mathrm{AsO}_{4} \rightleftharpoons \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{AsO}_{4}^{-} \quad \mathrm{K}_{\mathrm{a}_{1}}=5 \times 10^{-3}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{AsO}_{4}\right]}
$$

Initial $0.20 \mathrm{M} \quad \sim 0 \quad 0$
Equil. $0.20-x \quad x \quad x$
$5 \times 10^{-3}=\frac{x^{2}}{0.20-x} \approx \frac{x^{2}}{0.20}, x=3 \times 10^{-2} M ;$ assumption fails the 5% rule.

Solving by the method of successive approximations:

$$
5 \times 10^{-3}=x^{2} /(0.20-0.03), x=3 \times 10^{-2}(\text { consistent answer })
$$

$\left[\mathrm{H}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}\right]=3 \times 10^{-2} \mathrm{M} ;\left[\mathrm{H}_{3} \mathrm{AsO}_{4}\right]=0.20-0.03=0.17 \mathrm{M}$
Because $\mathrm{K}_{\mathrm{a}_{2}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HAsO}_{4}{ }^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{AsO}_{4}{ }^{-}\right]}=8 \times 10^{-8}$ is much smaller than the $\mathrm{K}_{\mathrm{a}_{1}}$ value, very little of $\mathrm{H}_{2} \mathrm{AsO}_{4}{ }^{-}$(and $\mathrm{HAsO}_{4}{ }^{2-}$) dissociates compared to $\mathrm{H}_{3} \mathrm{AsO}_{4}$. Therefore, $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{H}_{2} \mathrm{AsO}_{4}{ }^{-}\right]$ will not change significantly by the $\mathrm{K}_{\mathrm{a}_{2}}$ reaction. Using the previously calculated concentrations of H^{+}and $\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}$to calculate the concentration of $\mathrm{HAsO}_{4}{ }^{2-}$:

$$
8 \times 10^{-8}=\frac{\left(3 \times 10^{-2}\right)\left[\mathrm{HAsO}_{4}{ }^{2-}\right]}{3 \times 10^{-2}},\left[\mathrm{HAsO}_{4}{ }^{2-}\right]=8 \times 10^{-8} \mathrm{M}
$$

The assumption that the $\mathrm{K}_{\mathrm{a}_{2}}$ reaction does not change $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{H}_{2} \mathrm{AsO}_{4}{ }^{-}\right]$is good. We repeat the process using $\mathrm{K}_{\mathrm{a}_{3}}$ to get $\left[\mathrm{AsO}_{4}{ }^{3-}\right]$.
$\mathrm{K}_{\mathrm{a}_{3}}=6 \times 10^{-10}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{AsO}_{4}{ }^{3-}\right]}{\left[\mathrm{HAsO}_{4}{ }^{2-}\right]}=\frac{\left(3 \times 10^{-2}\right)\left[\mathrm{AsO}_{4}{ }^{3-}\right]}{8 \times 10^{-8}}$
$\left[\mathrm{AsO}_{4}{ }^{3-}\right]=1.6 \times 10^{-15} \approx 2 \times 10^{-15} \mathrm{M}$; assumption good.
So in 0.20 M analytical concentration of $\mathrm{H}_{3} \mathrm{AsO}_{4}$:

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{AsO}_{4}\right]=0.17 \mathrm{M} ;\left[\mathrm{H}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}\right]=3 \times 10^{-2} \mathrm{M} ;} \\
& {\left[\mathrm{HAsO}_{4}{ }^{2-}\right]=8 \times 10^{-8} \mathrm{M} ;\left[\mathrm{AsO}_{4}^{3-}\right]=2 \times 10^{-15} \mathrm{M} ;\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{H}^{+}\right]=3 \times 10^{-13} \mathrm{M}}
\end{aligned}
$$

88. Because $\mathrm{K}_{\mathrm{a}_{2}}$ for $\mathrm{H}_{2} \mathrm{~S}$ is so small, we can ignore the H^{+}contribution from the $\mathrm{K}_{\mathrm{a}_{2}}$ reaction.

$$
\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{H}^{+} \quad \mathrm{HS}^{-} \quad \mathrm{K}_{\mathrm{a}_{1}}=1.0 \times 10^{-7}
$$

Initial	$0.10 M$	~ 0	0
Equil.	$0.10-x$	x	x

$\mathrm{K}_{\mathrm{a}_{1}}=1.0 \times 10^{-7}=\frac{x^{2}}{0.10-x} \approx \frac{x^{2}}{0.10}, x=\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-4} ;$ assumptions good.
$\mathrm{pH}=-\log \left(1.0 \times 10^{-4}\right)=4.00$
Use the $\mathrm{K}_{\mathrm{a}_{2}}$ reaction to determine $\left[\mathrm{S}^{2-}\right.$].
$\begin{array}{llll}\text { Initial } & 1.0 \times 10^{-4} M & 1.0 \times 10^{-4} M & 0 \\ \text { Equil. } & 1.0 \times 10^{-4}-x & 1.0 \times 10^{-4}+x & x\end{array}$
$\mathrm{K}_{\mathrm{a}_{2}}=1.0 \times 10^{-19}=\frac{\left(1.0 \times 10^{-4}+x\right) x}{\left(1.0 \times 10^{-4}-x\right)} \approx \frac{\left(1.0 \times 10^{-4}\right) x}{1.0 \times 10^{-4}}$
$x=\left[\mathrm{S}^{2-}\right]=1.0 \times 10^{-19} \mathrm{M} ;$ assumptions good.
89. For $\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6} . \mathrm{K}_{\mathrm{a}_{1}}=7.9 \times 10^{-5}$ and $\mathrm{K}_{\mathrm{a}_{2}}=1.6 \times 10^{-12}$. Because $\mathrm{K}_{\mathrm{a}_{1}} \gg \mathrm{~K}_{\mathrm{a}_{2}}$, the amount of H^{+}produced by the $\mathrm{K}_{\mathrm{a}_{2}}$ reaction will be negligible.
$\left[\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}\right]_{0}=\frac{0.500 \mathrm{~g} \times \frac{1 \mathrm{molH}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}}{176.12 \mathrm{~g}}}{0.2000 \mathrm{~L}}=0.0142 \mathrm{M}$

$$
\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}(\mathrm{aq}) \rightleftharpoons \mathrm{HC}_{6} \mathrm{H}_{6} \mathrm{O}_{6}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{a}_{1}}=7.9 \times 10^{-5}
$$

$\begin{array}{llll}\text { Initial } & 0.0142 M & 0 & \sim 0 \\ \text { I }\end{array}$
Equil. $0.0142-x \quad x \quad x$
$\mathrm{K}_{\mathrm{a}_{1}}=7.9 \times 10^{-5}=\frac{x^{2}}{0.0142-x} \approx \frac{x^{2}}{0.0142}, x=1.1 \times 10^{-3} ;$ assumption fails the 5% rule.
Solving by the method of successive approximations:

$$
7.9 \times 10^{-5}=\frac{x^{2}}{0.0142-1.1 \times 10^{-3}}, x=1.0 \times 10^{-3} M \text { (consistent answer) }
$$

Because H^{+}produced by the $\mathrm{K}_{\mathrm{a}_{2}}$ reaction will be negligible, $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-3}$ and $\mathrm{pH}=$ 3.00 .
90. The relevant reactions are:

$$
\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \quad \mathrm{K}_{\mathrm{a} 1}=4.3 \times 10^{-7} ; \mathrm{HCO}_{3}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} \quad \mathrm{K}_{\mathrm{a}_{2}}=4.8 \times 10^{-11}
$$

Initially, we deal only with the first reaction (since $K_{a 1} \gg K_{a_{2}}$), and then let those results control values of concentrations in the second reaction.

$$
\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}
$$

Initial	$0.010 M$	~ 0	0
Equil.	$0.010-x$	x	x

$\mathrm{K}_{\mathrm{a}_{1}}=4.3 \times 10^{-7}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=\frac{x^{2}}{0.010-x} \approx \frac{x^{2}}{0.010}$
$x=6.6 \times 10^{-5} M=\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}^{-}\right] ;$assumptions good.

$$
\mathrm{HCO}_{3}^{-} \rightleftharpoons \mathrm{H}^{+} \quad+\mathrm{CO}_{3}^{2-}
$$

Initial $\quad 6.6 \times 10^{-5} \mathrm{M} \quad 6.6 \times 10^{-5} \mathrm{M} \quad 0$
Equil. $6.6 \times 10^{-5}-y \quad 6.6 \times 10^{-5}+y \quad y$
If y is small, then $\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}{ }^{-}\right]$and $\mathrm{K}_{\mathrm{a}_{2}}=4.8 \times 10^{-11}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]}{\left[\mathrm{HCO}_{3}{ }^{-}\right]} \approx y$.
$y=\left[\mathrm{CO}_{3}{ }^{2-}\right]=4.8 \times 10^{-11} \mathrm{M} ;$ assumptions good.
The amount of H^{+}from the second dissociation is $4.8 \times 10^{-11} \mathrm{M}$ or:

$$
\frac{4.8 \times 10^{-11}}{6.6 \times 10^{-5}} \times 100=7.3 \times 10^{-5} \%
$$

This result justifies our treating the equilibria separately. If the second dissociation contributed a significant amount of H^{+}, we would have to treat both equilibria simultaneously.

The reaction that occurs when acid is added to a solution of HCO_{3}^{-}is:

$$
\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

The bubbles are $\mathrm{CO}_{2}(\mathrm{~g})$ and are formed by the breakdown of unstable $\mathrm{H}_{2} \mathrm{CO}_{3}$ molecules. We should write $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{aq})$ or $\mathrm{CO}_{2}(\mathrm{aq})$ for what we call carbonic acid. It is for convenience, however, that we write $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$.

Acid-Base Properties of Salts

91. a. KCl is a soluble ionic compound that dissolves in water to produce $\mathrm{K}^{+}(\mathrm{aq})$ and $\mathrm{Cl}^{-}(\mathrm{aq})$. K^{+}(like the other alkali metal cations) has no acidic or basic properties. Cl^{-}is the conjugate base of the strong acid $\mathrm{HCl} . \mathrm{Cl}^{-}$has no basic (or acidic) properties. Therefore, a solution of KCl will be neutral because neither of the ions has any acidic or basic properties. The 1.0 M KCl solution has $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}$ and $\mathrm{pH}=\mathrm{pOH}=$ 7.00 .
b. KF is also a soluble ionic compound that dissolves in water to produce $\mathrm{K}^{+}(\mathrm{aq})$ and $\mathrm{F}^{-}(\mathrm{aq})$. The difference between the KCl solution and the KF solution is that F^{-}does have basic properties in water, unlike $\mathrm{Cl}^{-} . \mathrm{F}^{-}$is the conjugate base of the weak acid HF , and as is true for all conjugate bases of weak acids, F^{-}is a weak base in water. We must solve an equilibrium problem in order to determine the amount of OH^{-}this weak base produces in water.

$$
\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HF}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}, \mathrm{HF}}}=\frac{1.0 \times 10^{-14}}{7.2 \times 10^{-4}}
$$

Initial $1.0 \mathrm{M} \quad 0 \quad \sim 0 \quad \mathrm{~K}_{\mathrm{b}}=1.4 \times 10^{-11}$
$x \mathrm{~mol} / \mathrm{L}$ of F^{-}reacts with $\mathrm{H}_{2} \mathrm{O}$ to reach equilibrium

Change	$-x$	\rightarrow	$+x$	$+x$
Equil.	$1.0-x$		x	x

$$
\mathrm{K}_{\mathrm{b}}=1.4 \times 10^{-11}=\frac{[\mathrm{HF}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{F}^{-}\right]}, 1.4 \times 10^{-11}=\frac{x^{2}}{1.0-x} \approx \frac{x^{2}}{1.0}
$$

$$
x=\left[\mathrm{OH}^{-}\right]=3.7 \times 10^{-6} \mathrm{M} ; \text { assumptions good }
$$

$$
\mathrm{pOH}=5.43 ; \mathrm{pH}=14.00-5.43=8.57 ;\left[\mathrm{H}^{+}\right]=10^{-8.57}=2.7 \times 10^{-9} \mathrm{M}
$$

92. The solution is acidic from $\mathrm{HSO}_{4}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-}$. Solving the weak acid problem:

$$
\mathrm{HSO}_{4}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-} \quad \mathrm{K}_{\mathrm{a}}=1.2 \times 10^{-2}
$$

Initial $\quad 0.10 M \quad \sim 0 \quad 0$
Equil. $0.10-x \quad x \quad x$
$1.2 \times 10^{-2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]}{\left[\mathrm{HSO}_{4}{ }^{-}\right]}=\frac{x^{2}}{0.10-x} \approx \frac{x^{2}}{0.10}, x=0.035$
Assumption is not good (x is 35% of 0.10). Using successive approximations:

$$
\begin{aligned}
& \frac{x^{2}}{0.10-x}=\frac{x^{2}}{0.10-0.035}=1.2 \times 10^{-2}, x=0.028 \\
& \frac{x^{2}}{0.10-0.028}=1.2 \times 10^{-2}, x=0.029 ; \quad \frac{x^{2}}{0.10-0.029}=1.2 \times 10^{-2}, x=0.029 \\
x= & {\left[\mathrm{H}^{+}\right]=0.029 \mathrm{M} ; \mathrm{pH}=1.54 }
\end{aligned}
$$

93. a. $\mathrm{KNO}_{2} \rightarrow \mathrm{~K}^{+}+\mathrm{NO}_{2}^{-}: \mathrm{NO}_{2}^{-}$is a weak base. Ignore K^{+}.

$$
\mathrm{NO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HNO}_{2}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}}}=\frac{1.0 \times 10^{-14}}{4.0 \times 10^{-4}}=2.5 \times 10^{-11}
$$

Initial $0.12 M \quad 0 \quad \sim 0$
Equil. $0.12-x$

$$
\mathrm{K}_{\mathrm{b}}=2.5 \times 10^{-11}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{HNO}_{2}\right]}{\left[\mathrm{NO}_{2}^{-}\right]}=\frac{x^{2}}{0.12-x} \approx \frac{x^{2}}{0.12}
$$

$x=\left[\mathrm{OH}^{-}\right]=1.7 \times 10^{-6} \mathrm{M} ; \mathrm{pOH}=5.77 ; \mathrm{pH}=8.23 ;$ assumptions good.
b. $\mathrm{NaOCl} \rightarrow \mathrm{Na}^{+}+\mathrm{OCl}^{-}: \mathrm{OCl}^{-}$is a weak base. Ignore Na^{+}.

$$
\mathrm{OCl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HOCl}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}}}=\frac{1.0 \times 10^{-14}}{3.5 \times 10^{-8}}=2.9 \times 10^{-7}
$$

Initial $0.45 M \quad 0 \quad \sim 0$
Equil. $0.45-x \quad x \quad x$
$\mathrm{K}_{\mathrm{b}}=2.9 \times 10^{-7}=\frac{[\mathrm{HOCl}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{OCl}^{-}\right]}=\frac{x^{2}}{0.45-x} \approx \frac{x^{2}}{0.45}$
$x=\left[\mathrm{OH}^{-}\right]=3.6 \times 10^{-4} \mathrm{M} ; \mathrm{pOH}=3.44 ; \mathrm{pH}=10.56 ;$ assumptions good.
c. $\mathrm{NH}_{4} \mathrm{ClO}_{4} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{ClO}_{4}^{-}: \mathrm{NH}_{4}^{+}$is a weak acid. ClO_{4}^{-}is the conjugate base of a strong acid. ClO_{4}^{-}has no basic (or acidic) properties.

$$
\mathrm{NH}_{4}^{+} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}^{+} \quad \mathrm{K}_{\mathrm{a}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{b}}}=\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}=5.6 \times 10^{-10}
$$

Initial $0.40 \mathrm{M} \quad 0 \quad \sim 0$
Equil. $0.40-x \quad x \quad x$
$\mathrm{K}_{\mathrm{a}}=5.6 \times 10^{-10}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{NH}_{4}{ }^{+}\right]}=\frac{x^{2}}{0.40-x} \approx \frac{x^{2}}{0.40}$
$x=\left[\mathrm{H}^{+}\right]=1.5 \times 10^{-5} \mathrm{M} ; \mathrm{pH}=4.82$; assumptions good.
94. a. $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}+\mathrm{Cl}^{-}: \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$is a weak acid. Cl^{-}is the conjugate base of a strong acid. Cl^{-}has no basic (or acidic) properties.

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+} \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}^{+} \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right]}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{b}}}=\frac{1.00 \times 10^{-14}}{4.38 \times 10^{-4}} \\
\quad=2.28 \times 10^{-11} \\
\mathrm{CH}_{3} \mathrm{NH}_{3}^{+} \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}^{+}
\end{gathered}
$$

Initial
$0.10 \mathrm{M} \quad 0 \quad \sim 0$ $x \mathrm{~mol} / \mathrm{L} \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$dissociates to reach equilibrium
$\begin{array}{lllrr}\text { Change } & -x & \rightarrow & +x & +x \\ \text { Equil. } & 0.10-x & & x & x\end{array}$
$\mathrm{K}_{\mathrm{a}}=2.28 \times 10^{-11}=\frac{x^{2}}{0.10-x} \approx \frac{x^{2}}{0.10} \quad($ assuming $x \ll 0.10)$
$x=\left[\mathrm{H}^{+}\right]=1.5 \times 10^{-6} \mathrm{M} ; \mathrm{pH}=5.82$; assumptions good.
b. $\mathrm{NaCN} \rightarrow \mathrm{Na}^{+}+\mathrm{CN}^{-}: \quad \mathrm{CN}^{-}$is a weak base. Na^{+}has no acidic (or basic) properties.

$$
\begin{aligned}
& \mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCN}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}}}=\frac{1.0 \times 10^{-14}}{6.2 \times 10^{-10}} \\
& \text { Initial } 0.050 \mathrm{M} \quad 0 \quad \sim 0 \quad \mathrm{~K}_{\mathrm{b}}=1.6 \times 10^{-5} \\
& x \mathrm{~mol} / \mathrm{L} \mathrm{CN}^{-} \text {reacts with } \mathrm{H}_{2} \mathrm{O} \text { to reach equilibrium } \\
& \mathrm{K}_{\mathrm{b}}=1.6 \times 10^{-5}=\frac{[\mathrm{HCN}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CN}^{-}\right]}=\frac{x^{2}}{0.050-x} \approx \frac{x^{2}}{0.050} \\
& x=\left[\mathrm{OH}^{-}\right]=8.9 \times 10^{-4} \mathrm{M} ; \mathrm{pOH}=3.05 ; \mathrm{pH}=10.95 \text {; assumptions good. }
\end{aligned}
$$

95. All these salts contain Na^{+}, which has no acidic/basic properties and a conjugate base of a weak acid (except for NaCl , where Cl^{-}is a neutral species). All conjugate bases of weak acids are weak bases since K_{b} values for these species are between K_{w} and 1. To identify the species, we will use the data given to determine the K_{b} value for the weak conjugate base. From the K_{b} value and data in Table 7.2 of the text, we can identify the conjugate base present by calculating the K_{a} value for the weak acid. We will use A^{-}as an abbreviation for the weak conjugate base.

$$
\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HA}+\mathrm{OH}^{-}
$$

Initial	$0.100 \mathrm{~mol} / 1.00 \mathrm{~L}$	0	~ 0	
	$x \mathrm{~mol} / \mathrm{L} \mathrm{A}^{-}$	reacts	with $\mathrm{H}_{2} \mathrm{O}$ to reach	equilibrium
Change	$-x$	\rightarrow	$+x$	$+x$
Equil.	$0.100-x$		x	x

$\mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{A}^{-}\right]}=\frac{x^{2}}{0.100-x}$; from the problem, $\mathrm{pH}=8.07$:

$$
\mathrm{pOH}=14.00-8.07=5.93 ;\left[\mathrm{OH}^{-}\right]=x=10^{-5.93}=1.2 \times 10^{-6} \mathrm{M}
$$

$\mathrm{K}_{\mathrm{b}}=\frac{\left(1.2 \times 10^{-6}\right)^{2}}{0.100-\left(1.2 \times 10^{-6}\right)}=1.4 \times 10^{-11}=\mathrm{K}_{\mathrm{b}}$ value for the conjugate base of a weak acid.
The K_{a} value for the weak acid equals $\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{b}}: \mathrm{K}_{\mathrm{a}}=\frac{1.0 \times 10^{-14}}{1.4 \times 10^{-11}}=7.1 \times 10^{-4}$
From Table 7.2 of the text, this K_{a} value is closest to HF. Therefore, the unknown salt is NaF .
96. $\quad \mathrm{BHCl} \rightarrow \mathrm{BH}^{+}+\mathrm{Cl}^{-} ; \mathrm{Cl}^{-}$is the conjugate base of the strong acid HCl , so Cl^{-}has no acidic/ basic properties. BH^{+}is a weak acid because it is the conjugate acid of a weak base B . Determining the K_{a} value for BH^{+}:

$$
\mathrm{BH}^{+} \rightleftharpoons \mathrm{B} \quad+\quad \mathrm{H}^{+}
$$

Initial	0.10 M	0		~ 0
	$x \mathrm{~mol} / \mathrm{L} \mathrm{BH}^{+}$dissociates to reach equilibrium			
Change	$-x$	\rightarrow	$+x$	$+x$
Equil.	$0.10-x$	x	x	

$\mathrm{K}_{\mathrm{a}}=\frac{[\mathrm{B}]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{BH}^{+}\right]}=\frac{x^{2}}{0.10-x}$; from the problem, $\mathrm{pH}=5.82:$

$$
\left[\mathrm{H}^{+}\right]=x=10^{-5.82}=1.5 \times 10^{-6} M ; \quad \mathrm{K}_{\mathrm{a}}=\frac{\left(1.5 \times 10^{-6}\right)^{2}}{0.10-\left(1.5 \times 10^{-6}\right)}=2.3 \times 10^{-11}
$$

K_{b} for the base $\mathrm{B}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}}=\left(1.0 \times 10^{-14}\right) /\left(2.3 \times 10^{-11}\right)=4.3 \times 10^{-4}$.
From Table 7.3 of the text, this K_{b} value is closest to $\mathrm{CH}_{3} \mathrm{NH}_{2}$, so the unknown salt is $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}$.
97. B^{-}is a weak base. Use the weak base data to determine K_{b} for B^{-}.

$$
\mathrm{B}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HB}+\mathrm{OH}^{-}
$$

Initial	$0.050 M$	0	~ 0
Equil.	$0.050-x$	x	x

From $\mathrm{pH}=9.00: \mathrm{pOH}=5.00,\left[\mathrm{OH}^{-}\right]=10^{-5.00}=1.0 \times 10^{-5} M=x$.
$\mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{HB}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{B}^{-}\right]}=\frac{x^{2}}{0.050-x}=\frac{\left(1.0 \times 10^{-5}\right)^{2}}{0.050-\left(1.0 \times 10^{-5}\right)}=2.0 \times 10^{-9}$
Because B^{-}is a weak base, HB will be a weak acid. Solve the weak acid problem.

$$
\mathrm{HB} \quad \rightleftharpoons \quad \mathrm{H}^{+}+\mathrm{B}^{-}
$$

$\begin{array}{llrl}\text { Initial } & 0.010 M & \sim 0 & 0 \\ \text { Equil. } & 0.010-x & x & x\end{array}$
$\mathrm{K}_{\mathrm{a}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{b}}}=\frac{1.0 \times 10^{-14}}{2.0 \times 10^{-9}}, 5.0 \times 10^{-6}=\frac{x^{2}}{0.010-x} \approx \frac{x^{2}}{0.010}$
$x=\left[\mathrm{H}^{+}\right]=2.2 \times 10^{-4} \mathrm{M} ; \mathrm{pH}=3.66 ;$ assumptions good.
98. $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{Cl} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}+\mathrm{Cl}^{-} ; \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$is the conjugate acid of the weak base $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$ $\left(\mathrm{K}_{\mathrm{b}}=5.6 \times 10^{-4}\right)$. As is true for all conjugate acids of weak bases, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$is a weak acid. Cl^{-}has no basic (or acidic) properties. Ignore Cl^{-}. Solving the weak acid problem:

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2} \quad+\mathrm{H}^{+} \quad \mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{w}} / 5.6 \times 10^{-4}=1.8 \times 10^{-11}
$$

Initial	0.25 M		0
	$x \mathrm{~mol} / \mathrm{L}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$	\sim	
dissociates to reach equilibrium			
Change	$-x$	\rightarrow	$+x$

$\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-11}=\frac{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\right]}=\frac{x^{2}}{0.25-x} \approx \frac{x^{2}}{0.25} \quad($ assuming $x \ll 0.25)$
$x=\left[\mathrm{H}^{+}\right]=2.1 \times 10^{-6} \mathrm{M} ; \mathrm{pH}=5.68$; assumptions good.
$\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\right]=\left[\mathrm{H}^{+}\right]=2.1 \times 10^{-6} \mathrm{M} ;\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\right]=0.25 \mathrm{M} ;\left[\mathrm{Cl}^{-}\right]=0.25 \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{H}^{+}\right]=4.8 \times 10^{-9} \mathrm{M}$
99. Reference Table 7.6 of the text.
a. $\operatorname{Sr}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{Sr}^{2+}+2 \mathrm{NO}_{3}^{-}$neutral; Sr^{2+} and $\mathrm{NO}_{3}{ }^{-}$have no effect on pH .
b. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{CN} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}+\mathrm{CN}^{-}$basic; $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$is a weak acid $\left(\mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{b}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}}=1.0 \times 10^{-14} / 5.6 \times 10^{-4}=1.8 \times 10^{-11}\right)$, and CN^{-}is a weak base $\left(\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}, \mathrm{HCN}}=1.0 \times 10^{-14} / 6.2 \times 10^{-10}=1.6 \times 10^{-5}\right)$. Because $\mathrm{K}_{\mathrm{b}, \mathrm{CN}}>\mathrm{K}_{\mathrm{a}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}}$, the solution of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{CN}$ will be basic.
c. $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NHF} \rightarrow \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}+\mathrm{F}^{-}$acidic; $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$is a weak acid $\left(\mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{b}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}}=5.9 \times 10^{-6}\right)$, and F^{-}is a weak base $\left(\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}, \mathrm{HF}}=1.4 \times 10^{-11}\right)$. Because $\mathrm{K}_{\mathrm{a}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}}>\mathrm{K}_{\mathrm{b}, \mathrm{F}^{-}}$, the solution of $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NHF}$ will be acidic.
d. $\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$neutral; $\mathrm{NH}_{4}{ }^{+}$is a weak acid $\left(\mathrm{K}_{\mathrm{a}}=5.6 \times 10^{-10}\right)$, and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$is a weak base $\left(\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}, \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}=5.6 \times 10^{-10}\right.$). Because $\mathrm{K}_{\mathrm{a}, \mathrm{NH}_{4}{ }^{+}}=$ $\mathrm{K}_{\mathrm{b}, \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}}$, the solution of $\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ will have $\mathrm{pH}=7.00$.
e. $\mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}^{+}+\mathrm{HCO}_{3}^{-}$basic; ignore $\mathrm{Na}^{+} ; \mathrm{HCO}_{3}^{-}$is a weak acid $\left(\mathrm{K}_{\mathrm{a}_{2}}=4.8 \times 10^{-11}\right)$, and $\mathrm{HCO}_{3}{ }^{-}$is a weak base $\left(\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}_{1}, \mathrm{H}_{2} \mathrm{CO}_{3}}=2.3 \times 10^{-8}\right) . \mathrm{HCO}_{3}{ }^{-}$is a stronger base than an acid because $K_{b}>K_{a}$. Therefore, the solution is basic.
100. $\quad \mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}},-\log \left(\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}\right)=-\log \mathrm{K}_{\mathrm{w}}$
$-\log \mathrm{K}_{\mathrm{a}}-\log \mathrm{K}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{w}}, \mathrm{pK}_{\mathrm{a}}+\mathrm{pK} \mathrm{b}_{\mathrm{b}}=\mathrm{pK}=14.00\left(\mathrm{~K}_{\mathrm{w}}=1.0 \times 10^{-14}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$
101. a. These are strong acids like $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$, or HClO_{4}.
b. These are salts of the conjugate acids of the bases in Table 7.3. These conjugate acids are all weak acids. $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{NO}_{3}$, and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{Br}$ are three examples. Note that the anions used to form these salts are conjugate bases of strong acids; this is so because they have no acidic or basic properties in water (with the exception of $\mathrm{HSO}_{4}{ }^{-}$, which has weak acid properties).
c. These are strong ases like $\mathrm{LiOH}, \mathrm{NaOH}, \mathrm{KOH}, \mathrm{RbOH}, \mathrm{CsOH}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Sr}(\mathrm{OH})_{2}$, and $\mathrm{Ba}(\mathrm{OH})_{2}$.
d. These are salts of the conjugate bases of the neutrally charged weak acids in Table 7.2. The conjugate bases of weak acids are weak bases themselves. Three examples are $\mathrm{NaClO}_{2}, \mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, and CaF_{2}. The cations used to form these salts are $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}$, $\mathrm{Cs}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$, or Ba^{2+} because these cations have no acidic or basic properties in water. Notice that these are the cations of the strong bases you should memorize.
f. There are two ways to make a neutral salt. The easiest way is to combine a conjugate base of a strong acid (except for HSO_{4}^{-}) with one of the cations from a strong base. These ions have no acidic/basic properties in water, so salts of these ions are neutral. Three examples are $\mathrm{NaCl}, \mathrm{KNO}_{3}$, and SrI_{2}. Another type of strong electrolyte that can produce neutral solutions are salts that contain an ion with weak acid properties combined with an ion of opposite charge having weak base properties. If the K_{a} for the weak acid ion is equal to the K_{b} for the weak base ion, then the salt will produce a neutral solution. The most common example of this type of salt is ammonium acetate $\left(\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$. For this salt, K_{a} for $\mathrm{NH}_{4}^{+}=\mathrm{K}_{\mathrm{b}}$ for $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}=5.6 \times 10^{-10}$. This salt at any concentration produces a neutral solution.
102. Reference Table 7.6 of the text and the solution to Exercise 103 for some generalizations on acid-base properties of salts. The letters in parenthesis is(are) the generalization(s) listed in Exercise 103 that identifies that species.
CaBr_{2} : \quad Neutral; Ca^{2+} and Br^{-}have no acidic/basic properties (f and g).
$\mathrm{KNO}_{2}: \quad \mathrm{NO}_{2}{ }^{-}$is a weak base, $\mathrm{K}_{\mathrm{b}}=\left(1.0 \times 10^{-14}\right) /\left(4.0 \times 10^{-4}\right)=2.5 \times 10^{-11}(\mathrm{c}$ and d$)$. Ignore $\mathrm{K}^{+}(\mathrm{f})$.
$\mathrm{HClO}_{4}: \quad$ Strong acid (a)
$\mathrm{HNO}_{2}: \quad$ Weak acid, $\mathrm{K}_{\mathrm{a}}=4.0 \times 10^{-4}$ (c)
$\mathrm{HONH}_{3} \mathrm{ClO}_{4}: \quad \mathrm{HONH}_{3}{ }^{+}$is a weak acid, $\mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{b}, \mathrm{HONH}_{2}}=\left(1.0 \times 10^{-14}\right) /\left(1.1 \times 10^{-8}\right)$ $=9.1 \times 10^{-7}\left(\mathrm{c}\right.$ and e). Ignore $\mathrm{ClO}_{4}^{-}(\mathrm{g})$.
$\mathrm{NH}_{4} \mathrm{NO}_{2}$: $\quad \mathrm{NH}_{4}{ }^{+}$is a weak acid, $\mathrm{K}_{\mathrm{a}}=5.6 \times 10^{-10}$ (c and e). $\mathrm{NO}_{2}{ }^{-}$is a weak base, $\mathrm{K}_{\mathrm{b}}=$ 2.5×10^{-11} (c and d). Because the K_{a} value for $\mathrm{NH}_{4}{ }^{+}$is a slightly larger than K_{b} for NO_{2}^{-}, the solution will be slightly acidic with a pH a little lower than 7.0.

Using the information above (identity and the K_{a} or K_{b} values), the ordering is:

Most acidic \rightarrow most basic: $\mathrm{HClO}_{4}>\mathrm{HNO}_{2}>\mathrm{HONH}_{3} \mathrm{ClO}_{4}>\mathrm{NH}_{4} \mathrm{NO}_{2}>\mathrm{CaBr}_{2}>\mathrm{KNO}_{2}$
103. One difficult aspect of acid-base chemistry is recognizing what types of species are present in solution, that is, whether a species is a strong acid, strong base, weak acid, weak base, or a neutral species. Below are some ideas and generalizations to keep in mind that will help in recognizing types of species present.
a. Memorize the following strong acids: $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HNO}_{3}, \mathrm{HClO}_{4}$, and $\mathrm{H}_{2} \mathrm{SO}_{4}$
b. Memorize the following strong bases: $\mathrm{LiOH}, \mathrm{NaOH}, \mathrm{KOH}, \mathrm{RbOH}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Sr}(\mathrm{OH})_{2}$, and $\mathrm{Ba}(\mathrm{OH})_{2}$
c. Weak acids have a K_{a} value of less than 1 but greater than K_{w}. Some weak acids are listed in Table 7.2 of the text. Weak bases have a K_{b} value of less than 1 but greater than K_{w}. Some weak bases are listed in Table 7.3 of the text.
d. Conjugate bases of weak acids are weak bases, that is, all have a K_{b} value of less than 1 but greater than K_{w}. Some examples of these are the conjugate bases of the weak acids listed in Table 7.2 of the text.
e. Conjugate acids of weak bases are weak acids, that is, all have a K_{a} value of less than 1 but greater than K_{w}. Some examples of these are the conjugate acids of the weak bases listed in Table 7.3 of the text.
f. Alkali metal ions $\left(\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}\right)$and some alkaline earth metal ions $\left(\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}\right.$, Ba^{2+}) have no acidic or basic properties in water.
g. Conjugate bases of strong acids $\left(\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{ClO}_{4}^{-}, \mathrm{HSO}_{4}^{-}\right)$have no basic properties in water ($\mathrm{K}_{\mathrm{b}} \ll \mathrm{K}_{\mathrm{w}}$), and only HSO_{4}^{-}has any acidic properties in water.

Let's apply these ideas to this problem to see what types of species are present.
a. HI: Strong acid; HF: weak acid $\left(\mathrm{K}_{\mathrm{a}}=7.2 \times 10^{-4}\right)$

NaF: $\quad F^{-}$is the conjugate base of the weak acid HF, so F^{-}is a weak base. The K_{b} value for $\mathrm{F}^{-}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}, \mathrm{HF}}=1.4 \times 10^{-11}$. Na^{+}has no acidic or basic properties.
$\mathrm{NaI}: \quad$ Neutral $(\mathrm{pH}=7.0) ; \mathrm{Na}^{+}$and I^{-}have no acidic/basic properties.
In order of increasing pH , we place the compounds from most acidic (lowest pH) to most basic (highest pH). Increasing $\mathrm{pH}: \mathrm{HI}<\mathrm{HF}<\mathrm{NaI}<\mathrm{NaF}$.
b. $\quad \mathrm{NH}_{4} \mathrm{Br}: \quad \mathrm{NH}_{4}{ }^{+}$is a weak acid $\left(\mathrm{K}_{\mathrm{a}}=5.6 \times 10^{-10}\right)$, and Br^{-}is a neutral species.

HBr: Strong acid
KBr : \quad Neutral; K^{+}and Br^{-}have no acidic/basic properties.
$\mathrm{NH}_{3}: \quad$ Weak base, $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$
Increasing $\mathrm{pH}: \mathrm{HBr}<\mathrm{NH}_{4} \mathrm{Br}<\mathrm{KBr}<\mathrm{NH}_{3}$
Most Most
acidic basic
c. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{NO}_{3}$:
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$is a weak acid $\left(\mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{b}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}}=\right.$ $\left.1.0 \times 10^{-14} / 3.8 \times 10^{-10}=2.6 \times 10^{-5}\right)$, and $\mathrm{NO}_{3}{ }^{-}$is a neutral species.
$\mathrm{NaNO}_{3}: \quad$ Neutral; Na^{+}and $\mathrm{NO}_{3}{ }^{-}$have no acidic/basic properties.
$\mathrm{NaOH}: \quad$ Strong base
$\mathrm{HOC}_{6} \mathrm{H}_{5}: \quad$ Weak acid $\left(\mathrm{K}_{\mathrm{a}}=1.6 \times 10^{-10}\right)$
$\mathrm{KOC}_{6} \mathrm{H}_{5}: \quad \quad \mathrm{OC}_{6} \mathrm{H}_{5}^{-}$is a weak base $\left(\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}, \mathrm{HOC}_{6} \mathrm{H}_{5}}=6.3 \times 10^{-5}\right)$, and K^{+}is a neutral species.
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}: \quad$ Weak base $\left(\mathrm{K}_{\mathrm{b}}=3.8 \times 10^{-10}\right)$
$\mathrm{HNO}_{3}: \quad$ Strong acid

This is a little more difficult than the previous parts of this problem because two weak acids and two weak bases are present. Between the weak acids, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$is a stronger weak acid than $\mathrm{HOC}_{6} \mathrm{H}_{5}$ since the K_{a} value for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$is larger than the K_{a} value for $\mathrm{HOC}_{6} \mathrm{H}_{5}$. Between the two weak bases, because the K_{b} value for $\mathrm{OC}_{6} \mathrm{H}_{5}{ }^{-}$is larger than the K_{b} value for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}, \mathrm{OC}_{6} \mathrm{H}_{5}^{-}$is a stronger weak base than $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$.

Increasing pH: $\mathrm{HNO}_{3}<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{NO}_{3}<\mathrm{HOC}_{6} \mathrm{H}_{5}<\mathrm{NaNO}_{3}<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}<\mathrm{KOC}_{6} \mathrm{H}_{5}<\mathrm{NaOH}$ Most acidic

Most basic
104. $\quad \mathrm{NaN}_{3} \rightarrow \mathrm{Na}^{+}+\mathrm{N}_{3}{ }^{-}$; Azide $\left(\mathrm{N}_{3}{ }^{-}\right)$is a weak base since it is the conjugate base of a weak acid. All conjugate bases of weak acids are weak bases $\left(\mathrm{K}_{\mathrm{w}}<\mathrm{K}_{\mathrm{b}}<1\right)$. Ignore Na^{+}.

105. Major species: $\mathrm{NH}_{4}^{+}, \mathrm{OCl}^{-}$, and $\mathrm{H}_{2} \mathrm{O} ; \mathrm{K}_{\mathrm{a}}$ for $\mathrm{NH}_{4}^{+}=\left(1.0 \times 10^{-14}\right) /\left(1.8 \times 10^{-5}\right)=5.6 \times 10^{-10}$ and K_{b} for $\mathrm{OCl}^{-}=\left(1.0 \times 10^{-14}\right) /\left(3.5 \times 10^{-8}\right)=2.9 \times 10^{-7}$.

Because OCl^{-}is a better base than NH_{4}^{+}is an acid, the solution will be basic. The dominant equilibrium is the best acid $\left(\mathrm{NH}_{4}^{+}\right)$reacting with the best base $\left(\mathrm{OCl}^{-}\right)$present.

$$
\mathrm{NH}_{4}^{+}+\mathrm{OCl}^{-} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{HOCl}
$$

Initial	0.50 M	0.50 M		0	0
Change	- x	- x	\rightarrow	+ x	+ x
Equil.	$0.50-x$	$0.50-x$		x	x

$\mathrm{K}=\mathrm{K}_{\mathrm{a}, \mathrm{NH}_{4}+} \times \frac{1}{\mathrm{~K}_{\mathrm{a}, \text { HOCl }}}=\left(5.6 \times 10^{-10}\right) /\left(3.5 \times 10^{-8}\right)=0.016$
$\mathrm{K}=0.016=\frac{\left[\mathrm{NH}_{3}\right][\mathrm{HOCl}]}{\left[\mathrm{NH}_{4}{ }^{+}\right]\left[\mathrm{OCl}^{-}\right]}=\frac{x(x)}{(0.50-x)(0.50-x)}$
$\frac{x^{2}}{(0.50-x)^{2}}=0.016, \frac{x}{0.50-x}=(0.016)^{1 / 2}=0.13, x=0.058 \mathrm{M}$
To solve for the H^{+}, use any pertinent K_{a} or K_{b} value. Using K_{a} for $\mathrm{NH}_{4}{ }^{+}$:

$$
\mathrm{K}_{\mathrm{a}, \mathrm{NH}_{4}^{+}}=5.6 \times 10^{-10}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=\frac{(0.058)\left[\mathrm{H}^{+}\right]}{0.50-0.058},\left[\mathrm{H}^{+}\right]=4.3 \times 10^{-9} \mathrm{M}, \mathrm{pH}=8.37
$$

106. Major species: $\mathrm{Na}^{+}, \mathrm{PO}_{4}{ }^{3-}$ (a weak base), and $\mathrm{H}_{2} \mathrm{O}$; the K_{b} value for $\mathrm{PO}_{4}{ }^{3-}$ is much larger than the K_{b} values for $\mathrm{HPO}_{4}{ }^{2-}$ and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$. We can ignore the contribution of OH^{-}from the K_{b} reactions for $\mathrm{HPO}_{4}{ }^{2-}$ and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$.

$$
\mathrm{K}_{\mathrm{b}} \text { for } \mathrm{PO}_{4}^{3-}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}_{3}}}=\frac{1.0 \times 10^{-14}}{4.8 \times 10^{-13}}=0.021
$$

Note: K_{b} for $\mathrm{HPO}_{4}^{-}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}_{2}}=1.6 \times 10^{-7}$ and K_{b} for $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}_{1}}=1.3 \times 10^{-12}$. Indeed, K_{b} for $\mathrm{PO}_{4}{ }^{3-} \gg \mathrm{K}_{\mathrm{b}}$ values for $\mathrm{HPO}_{4}{ }^{-}$and and $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$.

$$
\mathrm{PO}_{4}{ }^{3-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPO}_{4}{ }^{2-}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=0.021
$$

Initial	$0.10 M$	0	~ 0
Equil.	$0.10-x$	x	x

$\mathrm{K}_{\mathrm{b}}=0.021=\frac{x^{2}}{0.10-x}$; because K_{b} is so large, the 5% assumption will not hold. Solving using the quadratic equation:

$$
x^{2}+(0.021) x-0.0021=0, x=\left[\mathrm{OH}^{-}\right]=3.7 \times 10^{-2}, \quad \mathrm{pOH}=1.43, \mathrm{pH}=12.57
$$

107. Major species: $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}\left(\mathrm{K}_{\mathrm{a}}=1.0 \times 10^{-5}\right), \mathrm{Cl}^{-}$(neutral), and $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}\right)$; $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$ will determine the pH since it is a stronger acid than water. Solving the weak acid problem in the usual manner:

$$
\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+} \rightleftharpoons \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+}+\mathrm{H}^{+} \quad \mathrm{K}_{\mathrm{a}}=1.0 \times 10^{-5}
$$

Initial
0.10 M

0
~ 0
Equil.
$0.10-x$
x
$\mathrm{K}_{\mathrm{a}}=1.0 \times 10^{-5}=\frac{x^{2}}{0.10-x} \approx \frac{x^{2}}{0.10}, x=\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-3} \mathrm{M}$
$\mathrm{pH}=-\log \left(1.0 \times 10^{-3}\right)=3.00 ;$ assumptions good.
108. Major species present are $\mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}\left[\mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{b}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}}=\left(1.0 \times 10^{-14}\right) /\left(1.7 \times 10^{-9}\right)=\right.$ $\left.5.9 \times 10^{-6}\right]$, and $\mathrm{F}^{-}\left[\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}, \mathrm{HF}}=\left(1.0 \times 10^{-14}\right) /\left(7.2 \times 10^{-4}\right)=1.4 \times 10^{-11}\right]$. The reaction to consider is the best acid present $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}\right)$reacting with the best base present $\left(\mathrm{F}^{-}\right)$. Let's solve by first setting up an ICE table.

$$
\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq})
$$

Initial	$0.200 M$	$0.200 M$	0	0
Change	$-x$	$-x$	\rightarrow	$+x$
Equil.	$0.200-x$	$0.200-x$	x	$+x$
		x		

$$
\mathrm{K}=\mathrm{K}_{\mathrm{a}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}} \times \frac{1}{\mathrm{~K}_{\mathrm{a}, \mathrm{HF}}}=5.9 \times 10^{-6} \times \frac{1}{7.2 \times 10^{-4}}=8.2 \times 10^{-3}
$$

$$
\mathrm{K}=\frac{\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right][\mathrm{HF}]}{\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}\right]\left[\mathrm{F}^{-}\right]}, \quad 8.2 \times 10^{-3}=\frac{x^{2}}{(0.200-x)^{2}} ; \text { taking the square root of both sides: }
$$

$$
0.091=\frac{x}{0.200-x}, \quad x=0.018-(0.091) x, \quad x=0.016 M
$$

From the setup to the problem, $x=\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right]=[\mathrm{HF}]=0.016 \mathrm{M}$, and $0.200-x=0.200-0.016$ $=0.184 M=\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}\right]=\left[\mathrm{F}^{-}\right]$. To solve for the $\left[\mathrm{H}^{+}\right]$, we can use either the K_{a} equilibrium for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$or the K_{a} equilibrium for HF. Using $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$data:

$$
\mathrm{K}_{\mathrm{a}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}}=5.9 \times 10^{-6}=\frac{\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}\right]}=\frac{(0.016)\left[\mathrm{H}^{+}\right]}{0.184},\left[\mathrm{H}^{+}\right]=6.8 \times 10^{-5} \mathrm{M}
$$

$\mathrm{pH}=-\log \left(6.8 \times 10^{-5}\right)=4.17$
As one would expect, because the K_{a} for the weak acid is larger than the K_{b} for the weak base, a solution of this salt should be acidic.

Solutions of Dilute Acids and Bases

109. We can't neglect the $\left[\mathrm{H}^{+}\right]$contribution from $\mathrm{H}_{2} \mathrm{O}$ since this is a very dilute solution of the strong acid. Following the strategy developed in Section 7.10 of the text, we first determine the charge balance equation and then manipulate this equation to get into one unknown.
[Positive charge] = [negative charge]
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{Cl}^{-}\right]+\left[\mathrm{OH}^{-}\right]=7.0 \times 10^{-7}+\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}$(because $\left[\mathrm{Cl}^{-}\right]=7.0 \times 10^{-7}$ and $\left[\mathrm{OH}^{-}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}$)

$$
\frac{\left[\mathrm{H}^{+}\right]^{2}-\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}=7.0 \times 10^{-7},\left[\mathrm{H}^{+}\right]^{2}-\left(7.0 \times 10^{-7}\right)\left[\mathrm{H}^{+}\right]-1.0 \times 10^{-14}=0
$$

Using the quadratic formula to solve:

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\frac{-\left(-7.0 \times 10^{-7}\right) \pm\left[\left(-7.0 \times 10^{-7}\right)^{2}-4(1)\left(-1.0 \times 10^{-14}\right)\right]^{1 / 2}}{2(1)}} \\
& {\left[\mathrm{H}^{+}\right]=7.1 \times 10^{-7} \mathrm{M} ; \mathrm{pH}=-\log \left(7.1 \times 10^{-7}\right)=6.15}
\end{aligned}
$$

110. We can't neglect the $\left[\mathrm{H}^{+}\right]$contribution from $\mathrm{H}_{2} \mathrm{O}$ since this is a very dilute solution of the strong acid. Following the strategy developed in Section 7.10 of the text, we first determine the charge balance equation and then manipulate this equation to get into one unknown.

Charge balance: $\left[\mathrm{H}^{+}\right]=\left[\mathrm{NO}_{3}^{-}\right]+\left[\mathrm{OH}^{-}\right],\left[\mathrm{H}^{+}\right]=\left[\mathrm{NO}_{3}^{-}\right]+\mathrm{K}_{\mathrm{w}} /\left[\mathrm{H}^{+}\right]$
$\left[\mathrm{H}^{+}\right]^{2}-1.0 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left(5.0 \times 10^{-8}\right),\left[\mathrm{H}^{+}\right]^{2}-\left(5.0 \times 10^{-8}\right)\left[\mathrm{H}^{+}\right]-1.0 \times 10^{-14}=0$
Using the quadratic formula: $\left[\mathrm{H}^{+}\right]=1.3 \times 10^{-7} \mathrm{M} ; \mathrm{pH}=6.89$
111.

$$
\mathrm{HBrO} \quad \rightleftharpoons \quad \mathrm{H}^{+}+\mathrm{BrO}^{-} \quad \mathrm{K}_{\mathrm{a}}=2 \times 10^{-9}
$$

Initial $1.0 \times 10^{-6} \mathrm{M} \quad \sim 0 \quad 0$ $x \mathrm{~mol} / \mathrm{L} \mathrm{HBrO}$ dissociates to reach equilibrium

Change	$-x$	$+x$	$+x$
Equil.	$1.0 \times 10^{-6}-x$	x	x

$\mathrm{K}_{\mathrm{a}}=2 \times 10^{-9}=\frac{x^{2}}{\left(1.0 \times 10^{-6}-x\right)} \approx \frac{x^{2}}{1.0 \times 10^{-6}}, x=\left[\mathrm{H}^{+}\right]=4 \times 10^{-8} M ; \mathrm{pH}=7.4$
Let's check the assumptions. This answer is impossible! We can't add a small amount of an acid to a neutral solution and get a basic solution. The highest pH possible for an acid in water is 7.0. In the correct solution we would have to take into account the autoionization of water.
112.

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}+\mathrm{H}^{+} \quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}=\text { phenol }
$$

Initial $4.0 \times 10^{-5} \mathrm{M} \quad 0 \quad \sim 0$
Equil. $4.0 \times 10^{-5}-x \quad x \quad x$
$\mathrm{K}_{\mathrm{a}}=\frac{x^{2}}{\left(4.0 \times 10^{-5}-x\right)}, 1.6 \times 10^{-10} \approx \frac{x^{2}}{4.0 \times 10^{-5}}, x=\left[\mathrm{H}^{+}\right]=8.0 \times 10^{-8} \mathrm{M}$
Check assumptions. The assumption that the H^{+}contribution from water is negligible is poor. Whenever the calculated pH is greater than $6.0\left(\left[\mathrm{H}^{+}\right]<1 \times 10^{-6} \mathrm{M}\right)$ for an acid solution, the H^{+}contribution from water should be considered. From Section 7.9 of the text, try $\left[\mathrm{H}^{+}\right]=$ $\left(\mathrm{K}_{\mathrm{a}}[\mathrm{HA}]_{0}+\mathrm{K}_{\mathrm{w}}\right)^{1 / 2}$.
$\left[\mathrm{H}^{+}\right]=\left[\left(1.6 \times 10^{-10}\right)\left(4.0 \times 10^{-5}\right)+\left(1.0 \times 10^{-14}\right)\right]^{1 / 2}=1.3 \times 10^{-7} \mathrm{M}$
This equation will work if $[\mathrm{HA}]_{0}=4.0 \times 10^{-5} \gg \frac{\left[\mathrm{H}^{+}\right]^{2}-\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}=5.3 \times 10^{-8}$. Assumption
good.
$\left[\mathrm{H}^{+}\right]=1.3 \times 10^{-7} M ; \mathrm{pH}=6.89$
Note: If the assumption that $\left(\left[\mathrm{H}^{+}\right]^{2}-\mathrm{K}_{\mathrm{w}}\right) /\left[\mathrm{H}^{+}\right] \ll \mathrm{K}_{\mathrm{a}}$ is bad, then the full equation derived in Section 7.9 of the text should be used.
113. $\mathrm{HCN} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CN}^{-} \quad \mathrm{K}_{\mathrm{a}}=6.2 \times 10^{-10}$

Initial $5.0 \times 10^{-4} \mathrm{M} \quad \sim 0 \quad 0$
Equil. $5.0 \times 10^{-4}-x \quad x \quad x$
$\mathrm{K}_{\mathrm{a}}=\frac{x^{2}}{\left(5.0 \times 10^{-4}-x\right)} \approx \frac{x^{2}}{5.0 \times 10^{-4}}=6.2 \times 10^{-10}, x=5.6 \times 10^{-7}$; check assumptions.
The assumption that the H^{+}contribution from water is negligible is poor. Whenever the calculated pH is greater than 6.0 for a weak acid, the water contribution to $\left[\mathrm{H}^{+}\right]$must be considered. From Section 7.9 in text:

$$
\text { if } \frac{\left[\mathrm{H}^{+}\right]^{2}-\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]} \ll[\mathrm{HCN}]_{0}=5.0 \times 10^{-4} \text {, then we can use }\left[\mathrm{H}^{+}\right]=\left(\mathrm{K}_{\mathrm{a}}[\mathrm{HCN}]_{\mathrm{o}}+\mathrm{K}_{\mathrm{w}}\right)^{1 / 2} \text {. }
$$

Using this formula: $\left[\mathrm{H}^{+}\right]=\left[\left(6.2 \times 10^{-10}\right)\left(5.0 \times 10^{-4}\right)+\left(1.0 \times 10^{-14}\right)\right]^{1 / 2},\left[\mathrm{H}^{+}\right]=5.7 \times 10^{-7} \mathrm{M}$
Checking assumptions: $\frac{\left[\mathrm{H}^{+}\right]^{2}-\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}=5.5 \times 10^{-7} \ll 5.0 \times 10^{-4}$
Assumptions good. $\mathrm{pH}=-\log \left(5.7 \times 10^{-7}\right)=6.24$
114. Because this is a very dilute solution of NaOH , we must worry about the amount of OH^{-} donated from the autoionization of water.

$$
\begin{aligned}
& \mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \\
& \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}
\end{aligned}
$$

This solution, like all solutions, must be charged balanced; that is, [positive charge] = [negative charge]. For this problem, the charge balance equation is:

$$
\left[\mathrm{Na}^{+}\right]+\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right] \text {, where }\left[\mathrm{Na}^{+}\right]=1.0 \times 10^{-7} M \text { and }\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}
$$

Substituting into the charge balance equation:

$$
1.0 \times 10^{-7}+\frac{1.0 \times 10^{-14}}{\left[\mathrm{OH}^{-}\right]}=\left[\mathrm{OH}^{-}\right],\left[\mathrm{OH}^{-}\right]^{2}-\left(1.0 \times 10^{-7}\right)\left[\mathrm{OH}^{-}\right]-1.0 \times 10^{-14}=0
$$

Using the quadratic formula to solve:

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=\frac{-\left(-1.0 \times 10^{-7}\right) \pm\left[\left(-1.0 \times 10^{-7}\right)^{2}-4(1)\left(-1.0 \times 10^{-14}\right)\right]^{1 / 2}}{2(1)}} \\
& {\left[\mathrm{OH}^{-}\right]=1.6 \times 10^{-7} \mathrm{M} ; \mathrm{pOH}=-\log \left(1.6 \times 10^{-7}\right)=6.80 ; \mathrm{pH}=7.20}
\end{aligned}
$$

Additional Exercises

115. Because the values of $\mathrm{K}_{\mathrm{a}_{1}}$ and $\mathrm{K}_{\mathrm{a}_{2}}$ are fairly close to each other, we should consider the amount of H^{+}produced by the $\mathrm{K}_{\mathrm{a}_{1}}$ and $\mathrm{K}_{\mathrm{a}_{2}}$ reactions.

$$
\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \quad \rightleftharpoons \quad \mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{-}+\mathrm{H}^{+} \quad \mathrm{K}_{\mathrm{a}_{1}}=8.4 \times 10^{-4}
$$

Initial	$0.15 M$	0	~ 0
Equil.	$0.15-x$	x	x

$8.4 \times 10^{-4}=\frac{x^{2}}{0.15-x} \approx \frac{x^{2}}{0.15}, x=1.1 \times 10^{-2} ;$ assumption fails the 5% rule.
Solving more exactly using the method of successive approximations:

$$
8.4 \times 10^{-4}=\frac{x^{2}}{\left(0.15-1.1 \times 10^{-2}\right)}, x=1.1 \times 10^{-2} M \quad \text { (consistent answer) }
$$

Now let's solve for the H^{+}contribution from the $\mathrm{K}_{\mathrm{a}_{2}}$ reaction.

$$
\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{-} \quad \rightleftharpoons \quad \mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{2-} \quad+\quad \mathrm{H}^{+} \quad \mathrm{K}_{\mathrm{a}_{2}}=1.8 \times 10^{-5}
$$

Initial	$1.1 \times 10^{-2} M$	0	$1.1 \times 10^{-2} M$
Equil.	$1.1 \times 10^{-2}-x$	x	$1.1 \times 10^{-2}+x$

$1.8 \times 10^{-5}=\frac{x\left(1.1 \times 10^{-2}+x\right)}{\left(1.1 \times 10^{-2}-x\right)} \approx \frac{x\left(1.1 \times 10^{-2}\right)}{1.1 \times 10^{-2}}, x=1.8 \times 10^{-5} \mathrm{M} ; \quad$ assumption good
At most, $1.8 \times 10^{-5} M \mathrm{H}^{+}$will be added from the $\mathrm{K}_{\mathrm{a}_{2}}$ reaction.
$\left[\mathrm{H}^{+}\right]_{\text {total }}=\left(1.1 \times 10^{-2}\right)+\left(1.8 \times 10^{-5}\right)=1.1 \times 10^{-2} \mathrm{M}$

Note that the H^{+}contribution from the $\mathrm{K}_{\mathrm{a}_{2}}$ reaction was negligible compared to the H^{+} contribution from the K_{a} reaction even though the two K_{a} values only differed by a factor of 50. Therefore, the H^{+}contribution from the $\mathrm{K}_{\mathrm{a}_{3}}$ reaction will also be negligible since $\mathrm{K}_{\mathrm{a}_{3}}<$ $\mathrm{K}_{\mathrm{a}_{2}}$.

Solving: $\mathrm{pH}=-\log \left(1.1 \times 10^{-2}\right)=1.96$
116. At a $\mathrm{pH}=0.00$, the $\left[\mathrm{H}^{+}\right]=10^{-0.00}=1.0 \mathrm{M}$. Begin with $1.0 \mathrm{~L} \times 2.0 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}=2.0 \mathrm{~mol}$ OH^{-}. We will need 2.0 mol HCl to neutralize the OH^{-}plus an additional 1.0 mol excess to reduce to a pH of 0.00 . We need 3.0 mol HCl total to achieve $\mathrm{pH}=0.00$.
117. a. The initial concentrations are halved since equal volumes of the two solutions are mixed.

$$
\begin{array}{llll}
& \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightleftharpoons & \mathrm{H}^{+} & + \\
\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \\
\text {Initial } & 0.100 M & 5.00 \times 10^{-4} M & 0 \\
\text { Equil. } & 0.100-x & 5.00 \times 10^{-4}+x & x \\
& \\
\mathrm{~K}_{\mathrm{a}}=1.8 \times & 10^{-5}=\frac{x\left(5.00 \times 10^{-4}+x\right)}{0.100-x} \approx \frac{x\left(5.00 \times 10^{-4}\right)}{0.100}
\end{array}
$$

$x=3.6 \times 10^{-3}$; assumption is horrible. Using the quadratic formula:

$$
\begin{aligned}
& x^{2}+\left(5.18 \times 10^{-4}\right) x-1.8 \times 10^{-6}=0 \\
& x=1.1 \times 10^{-3} M ;\left[\mathrm{H}^{+}\right]=5.00 \times 10^{-4}+x=1.6 \times 10^{-3} M ; \mathrm{pH}=2.80
\end{aligned}
$$

b. $x=\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]=1.1 \times 10^{-3} \mathrm{M}$
118. From the $\mathrm{pH}, \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClO}_{2}^{-}$is a weak base. Use the weak base data to determine K_{b} for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClO}_{2}^{-}$(which we will abbreviate as CB^{-}).

$$
\mathrm{CB}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCB}+\mathrm{OH}^{-}
$$

Initial $0.20 \mathrm{M} \quad 0 \quad \sim 0$
Equil. $0.20-x \quad x \quad x$
Because $\mathrm{pH}=8.65, \mathrm{pOH}=5.35$ and $\left[\mathrm{OH}^{-}\right]=10^{-5.35}=4.5 \times 10^{-6} \mathrm{M}=x$.
$\mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{HCB}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CB}^{-}\right]}=\frac{x^{2}}{0.20-x}=\frac{\left(4.5 \times 10^{-6}\right)^{2}}{0.20-\left(4.5 \times 10^{-6}\right)}=1.0 \times 10^{-10}$
Because CB^{-}is a weak base, HCB , chlorobenzoic acid, is a weak acid. Solving the weak acid problem:

	HCB	\rightleftharpoons	H^{+}
Initial	+20 M	~ 0	CB^{-}
Equil.	$0.20-x$	x	0
$\mathrm{~K}_{\mathrm{a}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{b}}}=\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-10}}, 1.0 \times 10^{-4}=\frac{x^{2}}{0.20-x} \approx \frac{x^{2}}{0.20}$			
$x=\left[\mathrm{H}^{+}\right]=4.5 \times 10^{-3} \mathrm{M} ; \mathrm{pH}=2.35 ;$	assumptions good.		

119. a. In the lungs there is a lot of O_{2}, and the equilibrium favors $\mathrm{Hb}\left(\mathrm{O}_{2}\right)_{4}$. In the cells there is a lower concentration of O_{2}, and the equilibrium favors $\mathrm{HbH}_{4}{ }^{4+}$.
b. CO_{2} is a weak acid, $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+}$. Removing CO_{2} essentially decreases H^{+}, which causes the hemoglobin reaction to shift right. $\mathrm{Hb}\left(\mathrm{O}_{2}\right)_{4}$ is then favored, and O_{2} is not released by hemoglobin in the cells. Breathing into a paper bag increases CO_{2} in the blood, thus increasing $\left[\mathrm{H}^{+}\right]$, which shifts the hemoglobin reaction left.
c. CO_{2} builds up in the blood, and it becomes too acidic, driving the hemoglobin equilibrium to the left. Hemoglobin can't bind O_{2} as strongly in the lungs. Bicarbonate ion acts as a base in water and neutralizes the excess acidity.
120. $\mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \quad \mathrm{K}=\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{CO}_{2}\right]}$

During exercise: $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=26.3 \mathrm{~m} M$ and $\left[\mathrm{CO}_{2}\right]=1.63 \mathrm{~m} M$, so: $\mathrm{K}=\frac{26.3 \mathrm{~m} M}{1.63 \mathrm{~m} M}=16.1$
At rest: $\mathrm{K}=16.1=\frac{24.9 \mathrm{~m} M}{\left[\mathrm{CO}_{2}\right]},\left[\mathrm{CO}_{2}\right]=1.55 \mathrm{~m} M$
121. $0.50 \mathrm{MHA}, \mathrm{K}_{\mathrm{a}}=1.0 \times 10^{-3} ; 0.20 \mathrm{MHB}, \mathrm{K}_{\mathrm{a}}=1.0 \times 10^{-10} ; 0.10 \mathrm{MHC}, \mathrm{K}_{\mathrm{a}}=1.0 \times 10^{-12}$

Major source of H^{+}is HA because its K_{a} value is significantly larger than other K_{a} values.

	HA	\rightleftharpoons	H^{+}	+
		A^{-}		
Initial	$0.50 M$		~ 0	
Equil.	$0.50-x$		x	
lat				

$\mathrm{K}_{\mathrm{a}}=\frac{x^{2}}{0.50-x}, 1.0 \times 10^{-3} \approx \frac{x^{2}}{0.50}, x=0.022 M=\left[\mathrm{H}^{+}\right], \frac{0.022}{0.50} \times 100=4.4 \%$ error
Assumption good. Let's check out the assumption that only HA is an important source of H^{+}.
For HB: $1.0 \times 10^{-10}=\frac{(0.022)\left[\mathrm{B}^{-}\right]}{(0.20)},\left[\mathrm{B}^{-}\right]=9.1 \times 10^{-10} \mathrm{M}$
At most, HB will produce an additional $9.1 \times 10^{-10} \mathrm{M} \mathrm{H}^{+}$. Even less will be produced by HC . Thus our original assumption was good. $\left[\mathrm{H}^{+}\right]=0.022 \mathrm{M}$.
122. For this problem we will abbreviate $\mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{H}$ as Hacr and $\mathrm{CH}_{2}=\mathrm{CHCO}_{2}^{-}$as acr ${ }^{-}$.

	Hacr	H^{+}	$+\mathrm{acr}{ }^{-}$
Initial	0.10 M	~ 0	0
Equil.	$0.10-x$	x	x

$$
\mathrm{K}_{\mathrm{a}}=\frac{x^{2}}{0.10-x}, 5.6 \times 10^{-5} \approx \frac{x^{2}}{0.10}, x=\left[\mathrm{H}^{+}\right]=2.4 \times 10^{-3} M ; \mathrm{pH}=2.62
$$

Assumptions good.
b. \quad Percent dissociation $=\frac{2.4 \times 10^{-3}}{0.10} \times 100=2.4 \%$
c. For 0.010% dissociation: $\left[\mathrm{acr}^{-}\right]=1.0 \times 10^{-4}(0.10)=1.0 \times 10^{-5} \mathrm{M}$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{acr}^{-}\right]}{[\mathrm{Hacr}]}, 5.6 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}\right]\left(1.0 \times 10^{-5}\right)}{0.10-\left(1.0 \times 10^{-5}\right)},\left[\mathrm{H}^{+}\right]=0.56 \mathrm{M}
$$

d. acr $^{-}$is a weak base and the major source of OH^{-}in this solution.

$$
\begin{aligned}
& \quad \mathrm{acr}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Hacr}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}}}=\frac{1.0 \times 10^{-14}}{5.6 \times 10^{-5}} \\
& \text { Initial } 0.050 \mathrm{M} \\
& \text { Equil. } 0.050-x
\end{aligned}
$$

123. The light bulb is bright because a strong electrolyte is present; that is, a solute is present that dissolves to produce a lot of ions in solution. The pH meter value of 4.6 indicates that a weak acid is present. (If a strong acid were present, the pH would be close to zero.) Of the possible substances, only HCl (strong acid), NaOH (strong base), and $\mathrm{NH}_{4} \mathrm{Cl}$ are strong electrolytes. Of these three substances, only $\mathrm{NH}_{4} \mathrm{Cl}$ contains a weak acid (the HCl solution would have a pH close to zero, and the NaOH solution would have a pH close to 14.0). $\mathrm{NH}_{4} \mathrm{Cl}$ dissociates into $\mathrm{NH}_{4}{ }^{+}$and Cl^{-}ions when dissolved in water. Cl^{-}is the conjugate base of a strong acid, so it has no basic (or acidic properties) in water. $\mathrm{NH}_{4}{ }^{+}$, however, is the conjugate acid of the weak base NH_{3}, so $\mathrm{NH}_{4}{ }^{+}$is a weak acid and would produce a solution with a $\mathrm{pH}=4.6$ when the concentration is $\sim 1.0 \mathrm{M} . \mathrm{NH}_{4} \mathrm{Cl}$ is the solute.
124. For $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{~K}_{\mathrm{a}_{1}}=7.5 \times 10^{-3}, \mathrm{~K}_{\mathrm{a}_{2}}=6.2 \times 10^{-8}$, and $\mathrm{K}_{\mathrm{a}_{3}}=4.8 \times 10^{-13}$. Because $\mathrm{K}_{\mathrm{a}_{1}}$ is much larger than $\mathrm{K}_{\mathrm{a}_{2}}$ and $\mathrm{K}_{\mathrm{a}_{3}}$, the dominant H^{+}producer is $\mathrm{H}_{3} \mathrm{PO}_{4}$, and the H^{+} contributed from $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$and $\mathrm{HPO}_{4}{ }^{2-}$ can be ignored Solving the weak acid problem in the typical manner.

$$
\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}^{+}
$$

Initial	$0.007 M$	0	~ 0
Equil.	$0.007-x$	x	x

$$
\mathrm{K}_{\mathrm{a}_{1}}=7.5 \times 10^{-3}=\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}=\frac{x^{2}}{0.007-x} \approx \frac{x^{2}}{0.007}
$$

$x=7.5 \times 10^{-3}$; assumption is horrible because x is 100% of 0.007 . We will use the quadratic equation to solve exactly.

$$
\begin{aligned}
& 7.5 \times 10^{-3}=\frac{x^{2}}{0.007-x}, x^{2}=5 \times 10^{-5}-\left(7.5 \times 10^{-3}\right) x, x^{2}+\left(7.5 \times 10^{-3}\right) x-5 \times 10^{-5}=0 \\
& x=\left[\mathrm{H}^{+}\right]=\frac{-7.5 \times 10^{-3} \pm\left[\left(7.5 \times 10^{-3}\right)^{2}-4(1)\left(-5 \times 10^{-5}\right)\right]^{1 / 2}}{2(1)}=4 \times 10^{-3} \mathrm{M} \\
& \mathrm{pH}=-\log \left(4 \times 10^{-3}\right)=2.4
\end{aligned}
$$

125. a. $\mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]}{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}^{+}\right]}=\frac{1}{\mathrm{~K}_{\mathrm{a}} \text { for } \mathrm{NH}_{4}^{+}}=\frac{\mathrm{K}_{\mathrm{b}}}{\mathrm{~K}_{\mathrm{w}}}=\frac{1.8 \times 10^{-5}}{1.0 \times 10^{-14}}=1.8 \times 10^{9}
$$

b. $\mathrm{NO}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}+\mathrm{HNO}_{2} \quad \mathrm{~K}_{\text {eq }}=\frac{\left[\mathrm{HNO}_{2}\right]}{\left[\mathrm{NO}_{2}{ }^{-}\right]\left[\mathrm{H}^{+}\right]}=\frac{1}{\mathrm{~K}_{\mathrm{a}}}=\frac{1}{4.0 \times 10^{-4}}=2.5 \times 10^{3}$
c. $\mathrm{NH}_{4}{ }^{+}+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} \quad \mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]}{\left[\mathrm{NH}_{4}{ }^{+}\right]\left[\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}\right]} \times \frac{\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]}$

$$
\mathrm{K}_{\mathrm{eq}}=\frac{\mathrm{K}_{\mathrm{a}} \text { for } \mathrm{NH}_{4}^{+}}{\mathrm{K}_{\mathrm{a}} \text { for } \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}=\frac{\mathrm{K}_{\mathrm{w}}}{\left(\mathrm{~K}_{\mathrm{b}} \text { for } \mathrm{NH}_{3}\right)\left(\mathrm{K}_{\mathrm{a}} \text { for } \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)}
$$

$$
\mathrm{K}_{\mathrm{eq}}=\frac{1.0 \times 10^{-14}}{\left(1.8 \times 10^{-5}\right)\left(1.8 \times 10^{-5}\right)}=3.1 \times 10^{-5}
$$

d. $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{K}_{\mathrm{eq}}=\frac{1}{\mathrm{~K}_{\mathrm{w}}}=1.0 \times 10^{14}$
e. $\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{K}_{\mathrm{eq}}=\frac{1}{\mathrm{~K}_{\mathrm{b}} \text { for } \mathrm{NH}_{3}}=5.6 \times 10^{4}$
f. $\mathrm{HNO}_{2}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}^{-}$

$$
\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]\left[\mathrm{OH}^{-}\right]} \times \frac{\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]}=\frac{\mathrm{K}_{\mathrm{a}} \text { for } \mathrm{HNO}_{2}}{\mathrm{~K}_{\mathrm{w}}}=\frac{4.0 \times 10^{-4}}{1.0 \times 10^{-14}}=4.0 \times 10^{10}
$$

126. $[\mathrm{HA}]_{0}=\frac{1.0 \mathrm{~mol}}{2.0 \mathrm{~L}}=0.50 \mathrm{~mol} / \mathrm{L}$; solve using the K_{a} equilibrium reaction.

	HA	\rightleftharpoons	H^{+}	+
		A^{-}		
Initial	$0.50 M$		~ 0	
Equil.	$0.50-x$		x	

$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{x^{2}}{0.50-x}$; in this problem, $[\mathrm{HA}]=0.45 \mathrm{M}$ so:

$$
[\mathrm{HA}]=0.45 \mathrm{M}=0.50 \mathrm{M}-x, x=0.05 \mathrm{M} ; \mathrm{K}_{\mathrm{a}}=\frac{(0.05)^{2}}{0.45}=6 \times 10^{-3}
$$

127. At $\mathrm{pH}=2.000,\left[\mathrm{H}^{+}\right]=10^{-2.000}=1.00 \times 10^{-2} \mathrm{M}$

At $\mathrm{pH}=4.000,\left[\mathrm{H}^{+}\right]=10^{-4.000}=1.00 \times 10^{-4} \mathrm{M}$
Mol H + present $=0.0100 \mathrm{~L} \times \frac{0.0100 \mathrm{molH}^{+}}{\mathrm{L}}=1.00 \times 10^{-4} \mathrm{~mol} \mathrm{H}^{+}$
Let $\mathrm{V}=$ total volume of solution at $\mathrm{pH}=4.000$:

$$
1.00 \times 10^{-4} \mathrm{~mol} / \mathrm{L}=\frac{1.00 \times 10^{-4} \mathrm{molH}^{+}}{\mathrm{V}}, \mathrm{~V}=1.00 \mathrm{~L}
$$

Volume of water added $=1.00 \mathrm{~L}-0.0100 \mathrm{~L}=0.99 \mathrm{~L}=990 \mathrm{~mL}$
128. 50.0 mL conc. $\mathrm{HCl} \operatorname{soln} \times \frac{1.19 \mathrm{~g}}{\mathrm{~mL}} \times \frac{38 \mathrm{~g} \mathrm{HCl}}{100 \mathrm{~g} \text { conc. } \mathrm{HCl} \text { soln }} \times \frac{1 \mathrm{molHCl}}{36.5 \mathrm{~g}}=0.62 \mathrm{~mol} \mathrm{HCl}$
20.0 mL conc. $\mathrm{HNO}_{3} \operatorname{soln} \times \frac{1.42 \mathrm{~g}}{\mathrm{~mL}} \times \frac{70 . \mathrm{g} \mathrm{HNO}_{3}}{100 \mathrm{~g} \text { soln }} \times \frac{1 \mathrm{molHNO}_{3}}{63.0 \mathrm{~g} \mathrm{HNO}_{3}}=0.32 \mathrm{~mol} \mathrm{HNO}$
$\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$ and $\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq}) \quad$ (Both are strong acids.)
So we will have $0.62+0.32=0.94 \mathrm{~mol}$ of H^{+}in the final solution.
$\left[\mathrm{H}^{+}\right]=\frac{0.94 \mathrm{~mol}}{1.00 \mathrm{~L}}=0.94 \mathrm{M} ; \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log (0.94)=0.027=0.03$
$\left[\mathrm{OH}^{-}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}=\frac{1.0 \times 10^{-14}}{0.94}=1.1 \times 10^{-14} \mathrm{M}$
129. Since NH_{3} is so concentrated, we need to calculate the OH^{-}contribution from the weak base NH_{3}.

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}
$$

$\begin{array}{llll}\text { Initial } 15.0 M & 0 & 0.0100 M & \text { (Assume no volume change.) }\end{array}$
$\begin{array}{ccc}\text { Equil. } 15.0-x & x & 0.0100+x\end{array}$
$\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}=\frac{x(0.0100+x)}{15.0-x} \approx \frac{x(0.0100)}{15.0}, x=0.027$; assumption is horrible (x is 270% of 0.0100).
Using the quadratic formula:

$$
\begin{aligned}
& \left(1.8 \times 10^{-5}\right)(15.0-x)=(0.0100) x+x^{2}, x^{2}+(0.0100) x-2.7 \times 10^{-4}=0 \\
& x=1.2 \times 10^{-2} M,\left[\mathrm{OH}^{-}\right]=\left(1.2 \times 10^{-2}\right)+0.0100=0.022 \mathrm{M}
\end{aligned}
$$

130. $\left[\mathrm{H}^{+}\right]_{0}=\left(1.0 \times 10^{-2}\right)+\left(1.0 \times 10^{-2}\right)=2.0 \times 10^{-2} \mathrm{M}$ from strong acids HCl and $\mathrm{H}_{2} \mathrm{SO}_{4}$.
HSO_{4}^{-}is a good weak acid $\left(\mathrm{K}_{\mathrm{a}}=0.012\right)$. However, HCN is a poor weak acid $\left(\mathrm{K}_{\mathrm{a}}=6.2 \times 10^{-}\right.$ ${ }^{10}$) and can be ignored. Calculating the H^{+}contribution from HSO_{4} :

$$
\mathrm{HSO}_{4}^{-} \rightleftharpoons \quad \mathrm{H}^{+} \quad+\quad \mathrm{SO}_{4}^{2-} \quad \mathrm{K}_{\mathrm{a}}=0.012
$$

$\mathrm{K}_{\mathrm{a}}=\frac{x(0.020+x)}{0.010-x}, 0.012 \approx \frac{x(0.020)}{0.010}, x=0.0060 ;$ assumption poor $(60 \%$ error $)$.
Using the quadratic formula: $x^{2}+(0.032) x-1.2 \times 10^{-4}=0, x=3.4 \times 10^{-3} \mathrm{M}$
$\left[\mathrm{H}^{+}\right]=0.020+x=0.020+\left(3.4 \times 10^{-3}\right)=0.023 \mathrm{M} ; \mathrm{pH}=1.64$
131. $\frac{30.0 \mathrm{mg} \mathrm{papH}^{+} \mathrm{Cl}^{-}}{\mathrm{mLsoln}} \times \frac{1000 \mathrm{~mL}}{\mathrm{~L}} \times \frac{1 \mathrm{~g}}{1000 \mathrm{mg}} \times \frac{1 \mathrm{molpapH}^{+} \mathrm{Cl}^{-}}{378.85 \mathrm{~g}} \times \frac{1 \mathrm{molpapH}^{+}}{\text {molpapH}^{+} \mathrm{Cl}^{-}}$ $=0.0792 \mathrm{M}$

$$
\mathrm{papH}^{+} \rightleftharpoons \text { pap }+\mathrm{H}^{+} \quad \mathrm{K}_{\mathrm{a}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{b}, \text { pap }}}=\frac{2.1 \times 10^{-14}}{8.33 \times 10^{-9}}=2.5 \times 10^{-6}
$$

Initial $0.0792 M \quad 0 \quad \sim 0$
Equil. $0.0792-x \quad x \quad x$
$\mathrm{K}_{\mathrm{a}}=2.5 \times 10^{-6}=\frac{x^{2}}{0.0792-x} \approx \frac{x^{2}}{0.0792}, \quad x=\left[\mathrm{H}^{+}\right]=4.4 \times 10^{-4} \mathrm{M}$
$\mathrm{pH}=-\log \left(4.4 \times 10^{-4}\right)=3.36 ;$ assumptions good.
132. $10.0 \mathrm{~g} \mathrm{NaOCN} \times \frac{1 \mathrm{~mol}}{65.01 \mathrm{~g}}=0.154 \mathrm{~mol} \mathrm{NaOCN}$
$10.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \times \frac{1 \mathrm{~mol}}{90.04 \mathrm{~g}}=0.111 \mathrm{~mol} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
$\frac{\mathrm{Mol} \mathrm{NaOCN}}{\mathrm{MolH}_{2} \mathrm{C}_{2} \mathrm{O}_{4}}($ actual $)=\frac{0.154 \mathrm{~mol}}{0.111 \mathrm{~mol}}=1.39$
The balanced reaction requires a larger $2: 1$ mole ratio. Therefore, NaOCN in the numerator is limiting. Because there is a $2: 2$ mole correspondence between mol NaOCN reacted and mol HNCO produced, 1.54 mol HNCO will be produced.

$$
\mathrm{HNCO} \rightleftharpoons \mathrm{H}^{+}+\mathrm{NCO}^{-} \quad \mathrm{K}_{\mathrm{a}}=1.2 \times 10^{-4}
$$

Initial $0.154 \mathrm{~mol} / 0.100 \mathrm{~L} \sim 0 \quad 0$
Equil. $1.54-x \quad x \quad x$
$\mathrm{K}_{\mathrm{a}}=1.2 \times 10^{-4}=\frac{x^{2}}{1.54-x} \approx \frac{x^{2}}{1.54}, x=\left[\mathrm{H}^{+}\right]=1.4 \times 10^{-2} \mathrm{M}$
$\mathrm{pH}=-\log \left(1.4 \times 10^{-2}\right)=1.85 ;$ assumptions good.
133.
a. $\quad \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+}+\mathrm{H}_{3} \mathrm{O}^{+}$

Initial	$0.10 M$	0	~ 0
Equil.	$0.10-x$	x	x

$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+}\right]}{\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}\right]}, \quad 6.0 \times 10^{-3}=\frac{x^{2}}{0.10-x} \approx \frac{x^{2}}{0.10}$
$x=2.4 \times 10^{-2} \mathrm{M}$; assumption is poor (24% error).
Using successive approximations:

$$
\frac{x^{2}}{0.10-0.024}=6.0 \times 10^{-3}, x=0.021
$$

$$
\frac{x^{2}}{0.10-0.021}=6.0 \times 10^{-3}, x=0.022 ; \frac{x^{2}}{0.10-0.022}=6.0 \times 10^{-3}, x=0.022
$$

$$
x=\left[\mathrm{H}^{+}\right]=0.022 \mathrm{M} ; \mathrm{pH}=1.66
$$

b. $\frac{\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+}\right]}{\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}\right]}=\frac{0.0010}{0.9990} ; \mathrm{K}_{\mathrm{a}}=6.0 \times 10^{-3}=\frac{\left[\mathrm{H}^{+}\right](0.0010)}{0.9990}$

Solving: $\left[\mathrm{H}^{+}\right]=6.0 M ; \mathrm{pH}=-\log (6.0)=-0.78$
c. Because of the lower charge, $\mathrm{Fe}^{2+}(\mathrm{aq})$ will not be as strong an acid as $\mathrm{Fe}^{3+}(\mathrm{aq})$. A solution of iron(II) nitrate will be less acidic (have a higher pH) than a solution with the same concentration of iron(III) nitrate.
134.
a. $\mathrm{NH}_{4}\left(\mathrm{HCO}_{3}\right) \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{HCO}_{3}^{-}$

$$
\mathrm{K}_{\mathrm{a}, \mathrm{NH}_{4}^{+}}=\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}=5.6 \times 10^{-10} ; \quad \mathrm{K}_{\mathrm{b}, \mathrm{HCO}_{3}^{-}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}_{1}}}=\frac{1.0 \times 10^{-14}}{4.3 \times 10^{-7}}=2.3 \times 10^{-8}
$$

Solution is basic since $\mathrm{HCO}_{3}{ }^{-}$is a stronger base than $\mathrm{NH}_{4}{ }^{+}$is as an acid. The acidic properties of HCO_{3}^{-}were ignored because $\mathrm{K}_{\mathrm{a}_{2}}$ is very small $\left(4.8 \times 10^{-11}\right)$.
b. $\mathrm{NaH}_{2} \mathrm{PO}_{4} \rightarrow \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$; ignore Na^{+}.

$$
\mathrm{K}_{\mathrm{a}_{2}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}}=6.2 \times 10^{-8} ; \quad \mathrm{K}_{\mathrm{b}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}_{1}}}=\frac{1.0 \times 10^{-14}}{7.5 \times 10^{-3}}=1.3 \times 10^{-12}
$$

Solution is acidic since $\mathrm{K}_{\mathrm{a}}>\mathrm{K}_{\mathrm{b}}$.
c. $\mathrm{Na}_{2} \mathrm{HPO}_{4} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{HPO}_{4}{ }^{2-}$; ignore Na^{+}.

$$
\mathrm{K}_{\mathrm{a}_{3}, \mathrm{HPO}_{4}{ }^{2-}}=4.8 \times 10^{-13} ; \mathrm{K}_{\mathrm{b}, \mathrm{HPO}_{4}{ }^{2-}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}_{2}}}=\frac{1.0 \times 10^{-14}}{6.2 \times 10^{-8}}=1.6 \times 10^{-7}
$$

Solution is basic since $K_{b}>K_{a}$.
d. $\mathrm{NH}_{4}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right) \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
$\mathrm{NH}_{4}{ }^{+}$is weak acid and $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$is also acidic (see part b). Solution with both ions present will be acidic.
e. $\mathrm{NH}_{4}\left(\mathrm{HCO}_{2}\right) \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{HCO}_{2}^{-}$; from Appendix $5, \mathrm{~K}_{\mathrm{a}, \mathrm{HCO}_{2} \mathrm{H}}=1.8 \times 10^{-4}$.

$$
\mathrm{K}_{\mathrm{a}, \mathrm{NH}_{4}^{+}}=5.6 \times 10^{-10} ; \quad \mathrm{K}_{\mathrm{b}, \mathrm{HCO}_{2}^{-}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}}}=\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-4}}=5.6 \times 10^{-11}
$$

Solution is acidic since $\mathrm{NH}_{4}{ }^{+}$is a stronger acid than HCO_{2}^{-}is a base.
135.

$$
\begin{aligned}
& \mathrm{CaO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) ; \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \\
& {\left[\mathrm{OH}^{-}\right]=\frac{0.25 \mathrm{~g} \mathrm{CaO} \times \frac{1 \mathrm{molCaO}}{56.08 \mathrm{~g}} \times \frac{1 \mathrm{molCa}(\mathrm{OH})_{2}}{1 \mathrm{molCaO}} \times \frac{2 \mathrm{molOH}^{-}}{\mathrm{molCa}(\mathrm{OH})_{2}}}{1.5 \mathrm{~L}}=5.9 \times 10^{-3} \mathrm{M}} \\
& \mathrm{pOH}=-\log \left(5.9 \times 10^{-3}\right)=2.23, \mathrm{pH}=14.00-2.23=11.77
\end{aligned}
$$

Challenge Problems

136. $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$

This is a very dilute solution of $\mathrm{Ca}(\mathrm{OH})_{2}$, so we can't ignore the OH^{-}contribution from $\mathrm{H}_{2} \mathrm{O}$. From the dissociation of $\mathrm{Ca}(\mathrm{OH})_{2}$ alone, $2\left[\mathrm{Ca}^{2+}\right]=\left[\mathrm{OH}^{-}\right]$. Including the $\mathrm{H}_{2} \mathrm{O}$ autoionization into H^{+}and OH^{-}, the overall charge balance is:

$$
\begin{aligned}
& 2\left[\mathrm{Ca}^{2+}\right]+\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right] \\
& 2\left(3.0 \times 10^{-7} \mathrm{M}\right)+\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=\left[\mathrm{OH}^{-}\right],\left[\mathrm{OH}^{-}\right]^{2}=\left(6.0 \times 10^{-7}\right)\left[\mathrm{OH}^{-}\right]+\mathrm{K}_{\mathrm{w}}
\end{aligned}
$$

$$
\left[\mathrm{OH}^{-}\right]^{2}-\left(6.0 \times 10^{-7}\right)\left[\mathrm{OH}^{-}\right]-1.0 \times 10^{-14}=0 \text {; using quadratic formula: }\left[\mathrm{OH}^{-}\right]=6.2 \times 10^{-7} \mathrm{M}
$$

137. $\frac{0.135 \mathrm{molCO}_{2}}{2.50 \mathrm{~L}}=5.40 \times 10^{-2} \mathrm{~mol} \mathrm{CO}_{2} / \mathrm{L}=5.40 \times 10^{-2} M \mathrm{H}_{2} \mathrm{CO}_{3} ; 0.105 \mathrm{M} \mathrm{CO}_{3}{ }^{2-}$

The best acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$ reacts with the best base present $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ for the principal equilibrium.
$\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{3}^{2-} \rightarrow 2 \mathrm{HCO}_{3}^{-} \quad \mathrm{K}=\frac{\mathrm{K}_{\mathrm{a}_{1}, \mathrm{H}_{2} \mathrm{CO}_{3}}}{\mathrm{~K}_{\mathrm{a}_{2}, \mathrm{H}_{2} \mathrm{CO}_{3}}}=\frac{4.3 \times 10^{-7}}{4.8 \times 10^{-11}}=9.0 \times 10^{3}$
Because $\mathrm{K} \gg 1$, assume all $\mathrm{CO}_{2}\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$ is converted into $\mathrm{HCO}_{3}{ }^{-}$; that is, $5.40 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$ $\mathrm{CO}_{3}{ }^{2-}$ is converted into $\mathrm{HCO}_{3}{ }^{-}$.
$\left[\mathrm{HCO}_{3}^{-}\right]=2\left(5.40 \times 10^{-2}\right)=0.108 \mathrm{M} ;\left[\mathrm{CO}_{3}{ }^{2-}\right]=0.105-0.0540=0.051 \mathrm{M}$
Note: If we solve for the $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ using these concentrations, we get $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=2.5 \times 10^{-5} \mathrm{M}$; our assumption that the reaction goes to completion is good (2.5×10^{-5} is 0.05% of 0.051). Whenever $\mathrm{K} \gg 1$, always assume the reaction goes to completion.

To solve for the $\left[\mathrm{H}^{+}\right]$in equilibrium with $\mathrm{HCO}_{3}{ }^{-}$and $\mathrm{CO}_{3}{ }^{2-}$, use the K_{a} expression for $\mathrm{HCO}_{3}{ }^{-}$.
$\mathrm{HCO}_{3}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} \quad \mathrm{K}_{\mathrm{a} 2}=4.8 \times 10^{-11}$
$4.8 \times 10^{-11}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]}{\left[\mathrm{HCO}_{3}{ }^{-}\right]}=\frac{\left[\mathrm{H}^{+}\right](0.051)}{0.108}$
$\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-10} ; \mathrm{pH}=10.00 ;$ assumptions good.
138. $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} ; \quad \mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HB}^{+}+\mathrm{OH}^{-}$
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] ; \quad \mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{HB}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}$
Charge balance: $\left[\mathrm{H}^{+}\right]+\left[\mathrm{HB}^{+}\right]=\left[\mathrm{OH}^{-}\right]$; material balance: $[\mathrm{B}]_{\mathrm{o}}=[\mathrm{B}]+\left[\mathrm{HB}^{+}\right]$
So: $\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]+\left[\mathrm{HB}^{+}\right]$

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}+\left[\mathrm{HB}^{+}\right] \text {or: }\left[\mathrm{HB}^{+}\right]=\left[\mathrm{OH}^{-}\right]-\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}} \\
& {[\mathrm{B}]=[\mathrm{B}]_{0}-\left[\mathrm{HB}^{+}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {[\mathrm{B}]=[\mathrm{B}]_{0}-\left(\left[\mathrm{OH}^{-}\right]-\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}\right) } \\
\mathrm{K}_{\mathrm{b}}= & \frac{\left(\left[\mathrm{OH}^{-}\right]-\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}\right)\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]_{0}-\left(\left[\mathrm{OH}^{-}\right]-\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}\right)}=\frac{\left[\mathrm{OH}^{-}\right]^{2}-\mathrm{K}_{\mathrm{w}}}{[\mathrm{~B}]_{0}-\frac{\left[\mathrm{OH}^{-}\right]^{2}-\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}}
\end{aligned}
$$

Assuming $[\mathrm{B}]_{0} \gg \frac{\left[\mathrm{OH}^{-}\right]^{2}-\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}$, then:

$$
\mathrm{K}_{\mathrm{b}} \approx \frac{\left[\mathrm{OH}^{-}\right]^{2}-\mathrm{K}_{\mathrm{w}}}{[\mathrm{~B}]_{0}}, \quad 6.1 \times 10^{-11}=\frac{\left[\mathrm{OH}^{-}\right]^{2}-1.0 \times 10^{-14}}{2.0 \times 10^{-5}}
$$

$\left[\mathrm{OH}^{-}\right]=1.1 \times 10^{-7} ; \mathrm{pOH}=6.96 ; \mathrm{pH}=7.04$ (assumption good)
139. Major species: $\mathrm{H}_{2} \mathrm{O}, \mathrm{Na}^{+}$, and NO_{2}^{-}; NO_{2}^{-}is a weak base. $\mathrm{NO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HNO}_{2}+\mathrm{OH}^{-}$

Because this is a very dilute solution of a weak base, the OH^{-}contribution from $\mathrm{H}_{2} \mathrm{O}$ must be considered. The weak base equations for dilute solutions are analogous to the weak acid equations derived in Section 7.9 of the text.

For A^{-}type bases $\left(\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HA}+\mathrm{OH}^{-}\right)$, the general equation is:

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right]^{2}-\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{~A}^{-}\right]_{0}-\frac{\left[\mathrm{OH}^{-}\right]^{2}-\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}}
$$

When $\left[\mathrm{A}^{-}\right]_{0} \gg \frac{\left[\mathrm{OH}^{-}\right]^{2}-\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}$, then $\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right]^{2}-\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{A}^{-}\right]_{0}}$ and:

$$
\left[\mathrm{OH}^{-}\right]=\left(\mathrm{K}_{\mathrm{b}}\left[\mathrm{~A}^{-}\right]_{0}+\mathrm{K}_{\mathrm{w}}\right)^{1 / 2}
$$

Try: $\left[\mathrm{OH}^{-}\right]=\left(\frac{1.0 \times 10^{-14}}{4.0 \times 10^{-4}} \times\left(6.0 \times 10^{-4}\right)+\left(1.0 \times 10^{-14}\right)\right)^{1 / 2}=1.6 \times 10^{-7} \mathrm{M}$
Checking assumption: $6.0 \times 10^{-4} \gg \frac{\left(1.6 \times 10^{-7}\right)^{2}-\left(1.0 \times 10^{-14}\right)}{1.6 \times 10^{-7}}=9.8 \times 10^{-8}$
Assumption good. $\left[\mathrm{OH}^{-}\right]=1.6 \times 10^{-7} \mathrm{M} ; \mathrm{pOH}=6.80 ; \mathrm{pH}=7.20$
140. a. $\mathrm{NaHCO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) ; \mathrm{NaHSO}_{4} \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq})$
Na^{+}has no acidic (or basic) properties. $\mathrm{HCO}_{3}{ }^{-}$is a weak acid with $\mathrm{K}_{\mathrm{a}}=4.8 \times 10^{-11}$.
$\mathrm{HCO}_{3}{ }^{-}$is also the conjugate base of the weak acid $\mathrm{H}_{2} \mathrm{CO}_{3}$, which makes it a weak base.
$\mathrm{HCO}_{3}{ }^{-}$is amphoteric; the dominant equilibrium of the best acid reacting with the best base present in a bicarbonate solution is:

$$
\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})
$$

Because the best acid and best base present are the same species, adding more $\mathrm{HCO}_{3}{ }^{-}$ adds both the acid and the base to the equilibrium at the same time. The $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{CO}_{3}{ }^{2-}$ concentrations are increased by the same proportions as more $\mathrm{HCO}_{3}{ }^{-}$is added. The proportional increase is determined only by the K_{a} value for $\mathrm{HCO}_{3}{ }^{-}$and the K_{b} value for $\mathrm{HCO}_{3}{ }^{-}$. Thus bicarbonate solutions are concentration independent.

For $\mathrm{HSO}_{4}{ }^{-}$solutions, the dominant equilibrium of the best acid reacting with the best base present is:

$$
\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{SO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

This is just the K_{a} reaction for $\mathrm{HSO}_{4}^{-} . \mathrm{HSO}_{4}^{-}$is the conjugate base of the strong acid $\mathrm{H}_{2} \mathrm{SO}_{4}$, so HSO_{4}^{-}is a much worse base than water. Water is the best base present in bisulfate solutions.

When more HSO_{4}^{-}is added, more $\mathrm{H}_{3} \mathrm{O}^{+}$will be produced, resulting in a more acidic pH . The pH of $\mathrm{HSO}_{4}{ }^{-}$solutions does depend on the concentration of HSO_{4}^{-}present.
b. The dominant equilibrium reaction is:

$$
\mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{HCO}_{3}{ }^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})
$$

From this reaction, the equilibrium concentrations of $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{CO}_{3}{ }^{2-}$ must be equal to each other. If we add the $\mathrm{K}_{\mathrm{a}_{1}}$ reaction for $\mathrm{H}_{2} \mathrm{CO}_{3}$ to the $\mathrm{K}_{\mathrm{a}_{2}}$ reaction for HCO_{3}^{-}, the result is:

$$
\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} \quad \mathrm{K}=\mathrm{K}_{\mathrm{a}_{1}} \times \mathrm{K}_{\mathrm{a}_{2}}=\frac{\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{CO}_{3}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}
$$

Because $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=\left[\mathrm{CO}_{3}^{2-}\right]: \quad\left[\mathrm{H}^{+}\right]^{2}=\mathrm{K}_{\mathrm{a}_{1}} \times \mathrm{K}_{\mathrm{a}_{2}}$
$\left[\mathrm{H}^{+}\right]=\left(\mathrm{K}_{\mathrm{a}_{1}} \times \mathrm{K}_{\mathrm{a}_{2}}\right)^{1 / 2}$ or taking the -log of both sides: $\mathrm{pH}=\frac{\mathrm{pK}_{\mathrm{a}_{1}}+\mathrm{pK}_{\mathrm{a}_{2}}}{2}$
$\mathrm{pH}=\frac{\mathrm{pK}_{\mathrm{a}_{1}}+\mathrm{pK}_{\mathrm{a}_{2}}}{2}=\frac{-\log \left(4.3 \times 10^{-7}\right)-\log \left(4.8 \times 10^{-11}\right)}{2}, \mathrm{pH}=\frac{6.37+10.32}{2}=8.35$
c. $\quad \mathrm{HSO}_{4}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-} \quad \mathrm{K}_{\mathrm{a}}=1.2 \times 10^{-2}$
$\begin{array}{llrl}\text { Initial } & 0.010 M & \sim 0 & 0 \\ \text { Equil. } & 0.010-x & x & x\end{array}$

$$
\begin{aligned}
& 1.2 \times 10^{-2}=\frac{x^{2}}{0.010-x} ; \text { solving using the quadratic equation: } \\
& x=\left[\mathrm{H}^{+}\right]=6.5 \times 10^{-3} \mathrm{M} ; \mathrm{pH}=2.19
\end{aligned}
$$

141. Major species: $\mathrm{BH}^{+}, \mathrm{X}^{-}$, and $\mathrm{H}_{2} \mathrm{O}$; because BH^{+}is the best acid and X^{-}is the best base in solution, the principal equilibrium is:

$$
\mathrm{BH}^{+}+\mathrm{X}^{-} \rightleftharpoons \mathrm{B}+\mathrm{HX}
$$

$\begin{array}{lllll}\text { Initial } & 0.100 ~ M & 0.100 ~ M & 0 & 0\end{array}$
Equil. $0.100-x \quad 0.100-x \quad x \quad x$
$\mathrm{K}=\frac{\mathrm{K}_{\mathrm{a}, \mathrm{BH}}}{\mathrm{K}_{\mathrm{a}, \mathrm{HX}}}=\frac{[\mathrm{B}][\mathrm{HX}]}{\left[\mathrm{BH}^{+}\right]\left[\mathrm{X}^{-}\right]}$, where $[\mathrm{B}]=[\mathrm{HX}]$ and $\left[\mathrm{BH}^{+}\right]=\left[\mathrm{X}^{-}\right]$
To solve for the K_{a} of HX, let's use the equilibrium expression to derive a general expression that relates pH to the pK_{a} for BH^{+}and to the pK_{a} for HX .

$$
\begin{aligned}
& \frac{\mathrm{K}_{\mathrm{a}, \mathrm{BH}}}{\mathrm{~K}_{\mathrm{a}, \mathrm{HX}}}=\frac{[\mathrm{HX}]^{2}}{\left[\mathrm{X}^{-}\right]^{2}} ; \quad \mathrm{K}_{\mathrm{a}, \mathrm{HX}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]}, \frac{[\mathrm{HX}]}{\left[\mathrm{X}^{-}\right]}=\frac{\left[\mathrm{H}^{+}\right]}{\mathrm{K}_{\mathrm{a}, \mathrm{HX}}} \\
& \frac{\mathrm{~K}_{\mathrm{a}, \mathrm{BH}}}{\mathrm{~K}_{\mathrm{a}, \mathrm{HX}}}=\frac{[\mathrm{HX}]^{2}}{\left[\mathrm{X}^{-}\right]^{2}}=\left(\frac{\left[\mathrm{H}^{+}\right]}{\mathrm{K}_{\mathrm{a}, \mathrm{HX}}}\right)^{2}, \quad\left[\mathrm{H}^{+}\right]^{2}=\mathrm{K}_{\mathrm{a}, \mathrm{BH}} \times \mathrm{K}_{\mathrm{a}, \mathrm{HX}}
\end{aligned}
$$

Taking the $-\log$ of both sides: $\mathrm{pH}=\frac{\mathrm{pK}_{\mathrm{a}, \mathrm{BH}^{+}}+\mathrm{pK}_{\mathrm{a}, \mathrm{HX}}}{2}$
This is a general equation that applies to all BHX type salts. Solving the problem:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{b}} \text { for } \mathrm{B}=1.0 \times 10^{-3} ; \mathrm{K}_{\mathrm{a}} \text { for } \mathrm{BH}^{+}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{b}}}=1.0 \times 10^{-11} \\
& \mathrm{pH}=8.00=\frac{11.00+\mathrm{pK}_{\mathrm{a}, \mathrm{HX}}}{2}, \mathrm{pK}_{\mathrm{a}, \mathrm{HX}}=5.00 \text { and } \mathrm{K}_{\mathrm{a}} \text { for } \mathrm{HX}=10^{-5.00}=1.0 \times 10^{-5}
\end{aligned}
$$

142. Major species: $\mathrm{NH}_{4}{ }^{+}, \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$, and $\mathrm{H}_{2} \mathrm{O}$; reacting the best acid with the best base:

	$\mathrm{NH}_{4}{ }^{+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightleftharpoons$	$\mathrm{NH}_{3}+\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$	$\mathrm{K}=\frac{\mathrm{K}_{\mathrm{a}, \mathrm{NH}_{4}{ }^{+}}}{\mathrm{K}_{\mathrm{a}, \mathrm{HC}_{2} \mathrm{O}_{4}}}$		
Initial	0.200 M	$0.100 M$	0	0	$\mathrm{~K}=9.2 \times 10^{-6}$
Change	$-x$	$-x$	$+x$	$+x$	
Equil.	$0.200-x$	$0.100-x$	x	x	

$$
\mathrm{K}=\frac{(x)(x)}{(0.200-x)(0.100-x)}=9.2 \times 10^{-6} ; \text { solving: } x=4.3 \times 10^{-4} \mathrm{M}
$$

Use either K_{a} expression to solve for $\left[\mathrm{H}^{+}\right]$.

$$
\begin{array}{r}
\mathrm{K}_{\mathrm{a}_{2}}=6.1 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]}{\left[\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}\right]}=\frac{\left[\mathrm{H}^{+}\right]\left(0.100-4.3 \times 10^{-4}\right)}{\left(4.3 \times 10^{-4}\right)}, \quad\left[\mathrm{H}^{+}\right]=2.6 \times 10^{-7} \mathrm{M} ; \\
\mathrm{pH}=6.59
\end{array}
$$

We get the same answer using the K_{a} equilibrium for $\mathrm{NH}_{4}{ }^{+}$.
$\mathrm{K}_{\mathrm{a}}=5.6 \times 10^{-10}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=\frac{\left[\mathrm{H}^{+}\right]\left(4.3 \times 10^{-4}\right)}{\left(0.200-4.3 \times 10^{-4}\right)}, \quad\left[\mathrm{H}^{+}\right]=2.6 \times 10^{-7} \mathrm{M} ; \mathrm{pH}=6.59$
143.

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \quad \mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}
$$

Initial $1.00 M \quad \sim 0 \quad 0$
Equil. $1.00-x \quad x \quad x$
$1.8 \times 10^{-5}=\frac{x^{2}}{1.00-x} \approx \frac{x^{2}}{1.00}, x=\left[\mathrm{H}^{+}\right]=4.24 \times 10^{-3} M$ (using one extra sig. fig.)
$\mathrm{pH}=-\log \left(4.24 \times 10^{-3}\right)=2.37$; assumptions good.

We want to double the pH to $2(2.37)=4.74$ by addition of the strong base NaOH . As is true with all strong bases, they are great at accepting protons. In fact, they are so good that we can assume they accept protons 100% of the time. The best acid present will react the strong base. This is $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$. The initial reaction that occurs when the strong base is added is:

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

Note that this reaction has the net effect of converting $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ into its conjugate base, $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$.

For a $\mathrm{pH}=4.74$, let's calculate the ratio of $\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right] /\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$ necessary to achieve this pH .
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}$
When $\mathrm{pH}=4.74,\left[\mathrm{H}^{+}\right]=10^{-4.74}=1.8 \times 10^{-5}$.
$\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}=\frac{\left(1.8 \times 10^{-5}\right)\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}, \frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}=1.0$

For a solution having $\mathrm{pH}=4.74$, we need to have equal concentrations (equal moles) of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$and $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$. Therefore, we need to add an amount of NaOH that will convert onehalf of the $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ into $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$. This amount is 0.50 M NaOH .

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

Before $\quad 1.00 \mathrm{M} \quad 0.50 \mathrm{M} \quad 0$
Change $-0.50 \quad-0.50 \rightarrow \quad+0.50$

| After | 0.50 M | 0 | 0.50 M |
| :--- | :--- | :--- | :--- | completion

From the preceding stoichiometry problem, adding enough $\mathrm{NaOH}(\mathrm{s})$ to produce a 0.50 M OH^{-}solution will convert one-half the $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ into $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$; this results in a solution with $\mathrm{pH}=4.74$.

Mass $\mathrm{NaOH}=1.00 \mathrm{~L} \times \frac{0.50 \mathrm{~mol} \mathrm{NaOH}}{\mathrm{L}} \times \frac{40.00 \mathrm{~g} \mathrm{NaOH}}{\mathrm{mol}}=20 . \mathrm{g} \mathrm{NaOH}$
144. Major species: $\mathrm{H}^{+}, \mathrm{HSO}_{4}^{-}$, and $\mathrm{H}_{2} \mathrm{O}$

Charge balance: $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{HSO}_{4}{ }^{-}\right]+2\left[\mathrm{SO}_{4}{ }^{2-}\right]$
Material balance: $\quad\left[\mathrm{HSO}_{4}^{-}\right]_{0}=\left[\mathrm{SO}_{4}{ }^{2-}\right]+\left[\mathrm{HSO}_{4}^{-}\right]=1.00 \times 10^{-7} \mathrm{M}$ (from the $1.00 \times 10^{-7} \mathrm{M}$ $\mathrm{H}_{2} \mathrm{SO}_{4}$)
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
$\mathrm{K}_{\mathrm{a}}=1.2 \times 10^{-2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]}{\left[\mathrm{HSO}_{4}{ }^{-}\right]} ;\left[\mathrm{HSO}_{4}{ }^{-}\right]=\left(1.00 \times 10^{-7}\right)-\left[\mathrm{SO}_{4}{ }^{2-}\right]$
$\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}+\left(1.00 \times 10^{-7}\right)-\left[\mathrm{SO}_{4}{ }^{2-}\right]+2\left[\mathrm{SO}_{4}{ }^{2-}\right],\left[\mathrm{SO}_{4}{ }^{2-}\right]=\left[\mathrm{H}^{+}\right]-\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}-\left(1.00 \times 10^{-7}\right)$
$1.2 \times 10^{-2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]}{\left[\mathrm{HSO}_{4}{ }^{-}\right]}=\frac{\left[\mathrm{H}^{+}\right]\left(\left[\mathrm{H}^{+}\right]-\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}-\left(1.00 \times 10^{-7}\right)\right)}{\left(1.00 \times 10^{-7}\right)-\left[\mathrm{H}^{+}\right]+\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}+\left(1.00 \times 10^{-7}\right)}$
This is a complicated expression to solve. Because this is such a dilute solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ $\left(1.00 \times 10^{-7} M\right)$, the K_{a} equilibrium expression for HSO_{4}^{-}dictates that $\left[\mathrm{SO}_{4}{ }^{2-}\right] \gg\left[\mathrm{HSO}_{4}^{-}\right]$. Let's assume that $\left[\mathrm{SO}_{4}{ }^{2-}\right]=1.00 \times 10^{-7} \mathrm{M}$ (assume most of the HSO_{4}^{-}dissociates):

$$
\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}+\left(1.00 \times 10^{-7}\right)+\left[\mathrm{SO}_{4}^{2-}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}+2.00 \times 10^{-7}
$$

Solving: $\left[\mathrm{H}^{+}\right]=2.4 \times 10^{-7} \mathrm{M} ; \mathrm{pH}=6.62$
Assumption good: $\frac{\left[\mathrm{SO}_{4}{ }^{2-}\right]}{\left[\mathrm{HSO}_{4}{ }^{-}\right]}=\frac{\mathrm{K}_{\mathrm{a}}}{\left[\mathrm{H}^{+}\right]}=\frac{1.2 \times 10^{-2}}{2.4 \times 10^{-7}}=5.0 \times 10^{4}$.
We do have mostly $\mathrm{SO}_{4}{ }^{2-}$ at equilibrium.
145. Major species: $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{H}^{+}$, and Cl^{-}; the H^{+}from the strong acid will react with the best base present $\left(\mathrm{NH}_{3}\right)$. Because strong acids are great at donating protons, the reaction between H^{+}and NH_{3} essentially goes to completion, that is, until one or both of the reactants runs out. The reaction is:

$$
\mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}^{+}
$$

Because equal volumes of $1.0 \times 10^{-4} \mathrm{M} \mathrm{NH}_{3}$ and $1.0 \times 10^{-4} \mathrm{M} \mathrm{H}^{+}$are mixed, both reactants are in stoichiometric amounts, and both reactants will run out at the same time. After reaction, only $\mathrm{NH}_{4}{ }^{+}$and Cl^{-}remain. Cl^{-}has no basic properties since it is the conjugate base of a strong acid. Therefore, the only species with acid-base properties is $\mathrm{NH}_{4}{ }^{+}$, a weak acid. The initial concentration of NH_{4}^{+}will be exactly one-half of $1.0 \times 10^{-4} \mathrm{M}$ since equal volumes of NH_{3} and HCl were mixed. Now we must solve the weak acid problem involving $5.0 \times 10^{-5} \mathrm{M} \mathrm{NH}_{4}^{+}$.

$$
\mathrm{NH}_{4}^{+} \quad \rightleftharpoons \quad \mathrm{H}^{+}+\mathrm{NH}_{3} \quad \mathrm{~K}_{\mathrm{a}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{b}}}=5.6 \times 10^{-10}
$$

Initial $\quad 5.0 \times 10^{-5} \mathrm{M} \quad \sim 0 \quad 0$
Equil. $5.0 \times 10^{-5}-x \quad x \quad x$
$\mathrm{K}_{\mathrm{a}}=\frac{x^{2}}{\left(5.0 \times 10^{-5}-x\right)} \approx \frac{x^{2}}{5.0 \times 10^{-5}}=5.6 \times 10^{-10}, x=1.7 \times 10^{-7} M$; check assumptions.
We cannot neglect $\left[\mathrm{H}^{+}\right]$that comes from $\mathrm{H}_{2} \mathrm{O}$. As discussed in Section 7.9 of the text, assume $5.0 \times 10^{-5} \gg\left(\left[\mathrm{H}^{+}\right]^{2}-\mathrm{K}_{\mathrm{w}}\right) /\left[\mathrm{H}^{+}\right]$. If this is the case, then:

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\left(\mathrm{K}_{\mathrm{a}}[\mathrm{HA}]_{0}+\mathrm{K}_{\mathrm{w}}\right)^{1 / 2}=1.9 \times 10^{-7} \mathrm{M} \text {; checking assumption: }} \\
& \frac{\left[\mathrm{H}^{+}\right]^{2}-\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}=1.4 \times 10^{-7} \ll 5.0 \times 10^{-5} \text { (assumption good) }
\end{aligned}
$$

So: $\left[\mathrm{H}^{+}\right]=1.9 \times 10^{-7} \mathrm{M} ; \mathrm{pH}=6.72$
146. Molar mass $=\frac{\mathrm{dRT}}{\mathrm{P}}=\frac{5.11 \mathrm{~g} / \mathrm{L} \times \frac{0.08206 \mathrm{~L} \text { atm }}{\mathrm{K} \mathrm{mol}} \times 298 \mathrm{~K}}{1.00 \mathrm{~atm}}=125 \mathrm{~g} / \mathrm{mol}$
$[\mathrm{HA}]_{0}=\frac{1.50 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{125 \mathrm{~g}}}{0.100 \mathrm{~L}}=0.120 \mathrm{M} ; \mathrm{pH}=1.80,\left[\mathrm{H}^{+}\right]=10^{-1.80}=1.6 \times 10^{-2} \mathrm{M}$
$\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$
Initial $0.120 M \quad \sim 0 \quad 0$
Equil. $0.120-x \quad x \quad x \quad$ where $x=\left[\mathrm{H}^{+}\right]=1.6 \times 10^{-2} M$
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{\left(1.6 \times 10^{-2}\right)^{2}}{0.120-0.016}=2.5 \times 10^{-3}$
147. $0.0500 M \mathrm{HCO}_{2} \mathrm{H}(\mathrm{HA}), \mathrm{K}_{\mathrm{a}}=1.77 \times 10^{-4} ; 0.150 M \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}(\mathrm{HB}), \mathrm{K}_{\mathrm{a}}=1.34 \times 10^{-5}$

Because two comparable weak acids are present, each contributes to the total pH .
Charge balance: $\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]+\left[\mathrm{B}^{-}\right]+\left[\mathrm{OH}^{-}\right]=\left[\mathrm{A}^{-}\right]+\left[\mathrm{B}^{-}\right]+\mathrm{K}_{\mathrm{w}} /\left[\mathrm{H}^{+}\right]$
Mass balance for HA and HB: $0.0500=[\mathrm{HA}]+\left[\mathrm{A}^{-}\right]$and $0.150=[\mathrm{HB}]+\left[\mathrm{B}^{-}\right]$

$$
\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=1.77 \times 10^{-4} ; \quad \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{B}^{-}\right]}{[\mathrm{HB}]}=1.34 \times 10^{-5}
$$

We have five equations and five unknowns. Manipulate the equations to solve.
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]+\left[\mathrm{B}^{-}\right]+\mathrm{K}_{\mathrm{w}} /\left[\mathrm{H}^{+}\right] ;\left[\mathrm{H}^{+}\right]^{2}=\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]+\left[\mathrm{H}^{+}\right]\left[\mathrm{B}^{-}\right]+\mathrm{K}_{\mathrm{w}}$
$\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]=\left(1.77 \times 10^{-4}\right)[\mathrm{HA}]=\left(1.77 \times 10^{-4}\right)\left(0.0500-\left[\mathrm{A}^{-}\right]\right)$
If $\left[\mathrm{A}^{-}\right] \ll 0.0500$, then $\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] \approx\left(1.77 \times 10^{-4}\right)(0.0500)=8.85 \times 10^{-6}$.
Similarly, assume $\left[\mathrm{H}^{+}\right]\left[\mathrm{B}^{-}\right] \approx\left(1.34 \times 10^{-5}\right)(0.150)=2.01 \times 10^{-6}$.
$\left[\mathrm{H}^{+}\right]^{2}=8.85 \times 10^{-6}+2.01 \times 10^{-6}+1.00 \times 10^{-14},\left[\mathrm{H}^{+}\right]=3.30 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$
Check assumptions: $\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] \approx 8.85 \times 10^{-6},\left[\mathrm{~A}^{-}\right] \approx \frac{8.85 \times 10^{-6}}{3.30 \times 10^{-3}} \approx 2.68 \times 10^{-3}$
Assumed $0.0500-\left[\mathrm{A}^{-}\right] \approx 0.0500$. This assumption is borderline (2.68×10^{-3} is 5.4% of 0.0500). The HB assumption is good (0.4% error).

Using successive approximations to refine the $\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]$value:

$$
\left[\mathrm{H}^{+}\right]=3.22 \times 10^{-3} \mathrm{M}, \mathrm{pH}=-\log \left(3.22 \times 10^{-3}\right)=2.492
$$

Note: If we treat each acid separately:

$$
\begin{aligned}
\mathrm{H}^{+} \text {from } \mathrm{HA} & =2.9 \times 10^{-3} \\
\mathrm{H}^{+} \text {from } \mathrm{HB} & =1.4 \times 10^{-3} \\
\hline & 4.3 \times 10^{-3} \mathrm{M}=\left[\mathrm{H}^{+}\right]_{\text {total }}
\end{aligned}
$$

This assumes the acids did not suppress each other's ionization. They do, and we expect the $\left[\mathrm{H}^{+}\right]$to be less than $4.3 \times 10^{-3} \mathrm{M}$. We get such an answer.
148. $1.000 \mathrm{~L} \times \frac{1.00 \times 10^{-4} \mathrm{molHA}}{\mathrm{L}}=1.00 \times 10^{-4} \mathrm{~mol} \mathrm{HA}$
25.0% dissociation gives:

$$
\begin{aligned}
& \mathrm{mol} \mathrm{H}^{+}=0.250 \times\left(1.00 \times 10^{-4}\right)=2.50 \times 10^{-5} \mathrm{~mol} \\
& \mathrm{~mol} \mathrm{~A}^{-}=0.250 \times\left(1.00 \times 10^{-4}\right)=2.50 \times 10^{-5} \mathrm{~mol} \\
& \mathrm{~mol} \mathrm{HA}^{-}=0.750 \times\left(1.00 \times 10^{-4}\right)=7.50 \times 10^{-5} \mathrm{~mol} \\
& 1.00 \times 10^{-4}=\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{\left(\frac{2.50 \times 10^{-5}}{\mathrm{~V}}\right)\left(\frac{2.50 \times 10^{-5}}{\mathrm{~V}}\right)}{\left(\frac{7.50 \times 10^{-5}}{\mathrm{~V}}\right)} \\
& 1.00 \times 10^{-4}=\frac{\left(2.50 \times 10^{-5}\right)^{2}}{\left(7.50 \times 10^{-5}\right)(\mathrm{V})}, \quad \mathrm{V}=\frac{\left(2.50 \times 10^{-5}\right)^{2}}{\left(1.00 \times 10^{-4}\right)\left(7.50 \times 10^{-5}\right)}=0.0833 \mathrm{~L}=83.3 \mathrm{~mL}
\end{aligned}
$$

The volume goes from 1000 mL to 83.3 mL , so 917 mL of water evaporated.
149.

$$
\mathrm{HA} \quad \rightleftharpoons \quad \mathrm{H}^{+}+\mathrm{A}^{-} \quad \mathrm{K}_{\mathrm{a}}=5.00 \times 10^{-10}
$$

Initial	$[\mathrm{HA}]_{0}$		~ 0	0
Change	$-x$	\rightarrow	$+x$	$+x$
Equil.	$[\mathrm{HA}]_{0}-x$		x	x

From the problem: $\mathrm{pH}=5.650$, so $\left[\mathrm{H}^{+}\right]=x=10^{-5.650}=2.24 \times 10^{-6} \mathrm{M}$

$$
5.00 \times 10^{-10}=\frac{x^{2}}{[\mathrm{HA}]_{0}-x}=\frac{\left(2.24 \times 10^{-6}\right)^{2}}{\left([\mathrm{HA}]_{0}-2.24 \times 10^{-6}\right)}, \quad[\mathrm{HA}]_{0}=1.00 \times 10^{-2} \mathrm{M}
$$

After the water is added, the pH of the solution is between 6 and 7, so the water contribution to the $\left[\mathrm{H}^{+}\right]$must be considered. The general expression for a very dilute weak acid solution is:

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}-\mathrm{K}_{\mathrm{w}}}{[\mathrm{HA}]_{0}-\frac{\left[\mathrm{H}^{+}\right]^{2}-\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}}
$$

$\mathrm{pH}=6.650 ;\left[\mathrm{H}^{+}\right]=10^{-6.650}=2.24 \times 10^{-7} \mathrm{M}$; let $\mathrm{V}=$ volume of water added:

$$
5.00 \times 10^{-10}=\frac{\left(2.24 \times 10^{-7}\right)^{2}-\left(1.00 \times 10^{-14}\right)}{\left(1.00 \times 10^{-2}\right)\left(\frac{0.0500}{0.0500+\mathrm{V}}\right)-\frac{\left(2.24 \times 10^{-7}\right)^{2}-\left(1.00 \times 10^{-14}\right)}{2.24 \times 10^{-7}}}
$$

Solving, $\mathrm{V}=6.16 \mathrm{~L}$ of water were added.
150. Major species $=\mathrm{Na}^{+}, \mathrm{HSO}_{4}^{-}, \mathrm{NH}_{3}$, and $\mathrm{H}_{2} \mathrm{O}$, reaction: $\mathrm{HSO}_{4}^{-}+\mathrm{NH}_{3} \rightleftharpoons \mathrm{SO}_{4}{ }^{2-}+\mathrm{NH}_{4}{ }^{+}$
$\mathrm{K}=\frac{\left[\mathrm{SO}_{4}{ }^{2-}\right]\left[\mathrm{NH}_{4}{ }^{+}\right]}{\left[\mathrm{HSO}_{4}^{-}\right]\left[\mathrm{NH}_{3}\right]}=\frac{\mathrm{K}_{\mathrm{a}, \mathrm{HSO}_{4}{ }^{-}}}{\mathrm{K}_{\mathrm{a}, \mathrm{NH}_{4}{ }^{+}}}=\frac{1.2 \times 10^{-2}}{5.6 \times 10^{-10}}=2.1 \times 10^{7}$
Because K is a large number, let the reaction go to completion, and then solve the back equilibrium problem.

$$
\mathrm{HSO}_{4}^{-}+\mathrm{NH}_{3} \rightleftharpoons \mathrm{SO}_{4}^{2-}+\mathrm{NH}_{4}^{+}
$$

Before	0.10 M	0.10 M	0	0
After	0	0	0.10 M	0.10 M

Now allow the reaction to attain equilibrium:

$$
\mathrm{HSO}_{4}^{-}+\mathrm{NH}_{3} \rightleftharpoons \mathrm{SO}_{4}^{2-}+\mathrm{NH}_{4}^{+}
$$

Initial	0	0	$0.10 M$	$0.10 M$
Change	$+x$	$+x$	$\leftarrow x$	$-x$
Equil.	x	x	$0.10-x$	$0.10-x$

$\frac{(0.10-x)^{2}}{x^{2}} \approx \frac{(0.10)^{2}}{x^{2}}=2.1 \times 10^{7}, x=2.2 \times 10^{-5} \mathrm{M} ;$ assumptions good.
$\left[\mathrm{HSO}_{4}^{-}{ }^{-}\right]=2.2 \times 10^{-5} \mathrm{M} ; \quad\left[\mathrm{SO}_{4}{ }^{2-}\right]=0.10 \mathrm{M}$
$\left[\mathrm{NH}_{3}\right]=2.2 \times 10^{-5} \mathrm{M} ; \quad\left[\mathrm{NH}_{4}^{+}\right]=0.10 \mathrm{M}$
Using one of the K_{a} equilibrium expressions to solve for $\left[\mathrm{H}^{+}\right]$:

$$
\mathrm{K}_{\mathrm{a}, \mathrm{HSO}_{4}^{-}}=\frac{\left[\mathrm{H}^{+}\right](0.10)}{2.2 \times 10^{-5}}=1.2 \times 10^{-2}, \quad\left[\mathrm{H}^{+}\right]=2.6 \times 10^{-6} \mathrm{M} ; \mathrm{pH}=5.59
$$

151.

a. $\quad \mathrm{HCO}_{3}^{-}+\mathrm{HCO}_{3}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{3}{ }^{2-}$

$$
\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]\left[\mathrm{CO}_{3}^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]\left[\mathrm{HCO}_{3}^{-}\right]} \times \frac{\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]}=\frac{\mathrm{K}_{\mathrm{a}_{2}}}{\mathrm{~K}_{\mathrm{a}_{1}}}=\frac{4.8 \times 10^{-11}}{4.3 \times 10^{-7}}=1.1 \times 10^{-4}
$$

b. $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=\left[\mathrm{CO}_{3}{ }^{2-}\right]$ since the reaction in part a is the principal equilibrium reaction.
c. $\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-} \quad \mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{CO}_{3}{ }^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=\mathrm{K}_{\mathrm{a}_{1}} \times \mathrm{K}_{\mathrm{a}_{2}}$

Because $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=\left[\mathrm{CO}_{3}{ }^{2-}\right]$ from part b, $\left[\mathrm{H}^{+}\right]^{2}=\mathrm{K}_{\mathrm{a}_{1}} \times \mathrm{K}_{\mathrm{a}_{2}}$.
$\left[\mathrm{H}^{+}\right]=\left(\mathrm{K}_{\mathrm{a}_{1}} \times \mathrm{K}_{\mathrm{a}_{2}}\right)^{1 / 2}$, or taking the - log of both sides: $\mathrm{pH}=\frac{\mathrm{pK}_{\mathrm{a}_{1}}+\mathrm{pK}_{\mathrm{a}_{2}}}{2}$
d. $\left[\mathrm{H}^{+}\right]=\left[\left(4.3 \times 10^{-7}\right) \times\left(4.8 \times 10^{-11}\right)\right]^{1 / 2},\left[\mathrm{H}^{+}\right]=4.5 \times 10^{-9} \mathrm{M} ; \mathrm{pH}=8.35$
152.

$$
\mathrm{HA} \rightleftharpoons \quad \mathrm{H}^{+} \quad+\quad \mathrm{A}^{-} \quad \mathrm{K}_{\mathrm{a}}=1.00 \times 10^{-6}
$$

Initial $\mathrm{C} \quad \sim 0 \quad 0 \quad \mathrm{C}=[\mathrm{HA}]_{0}$ for $\mathrm{pH}=4.000$
Equil. $\mathrm{C}-1.00 \times 10^{-4} \quad 1.00 \times 10^{-4} \quad 1.00 \times 10^{-4} \quad x=\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-4} \mathrm{M}$
$\mathrm{K}_{\mathrm{a}}=\frac{\left(1.00 \times 10^{-4}\right)^{2}}{\left(\mathrm{C}-1.00 \times 10^{-4}\right)}=1.00 \times 10^{-6}$; solving: $\mathrm{C}=0.0101 \mathrm{M}$
The solution initially contains $50.0 \times 10^{-3} \mathrm{~L} \times 0.0101 \mathrm{~mol} / \mathrm{L}=5.05 \times 10^{-4} \mathrm{~mol} \mathrm{HA}$. We then dilute to a total volume V in liters. The resulting $\mathrm{pH}=5.000$, so $\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-5}$. In the typical weak acid problem, $x=\left[\mathrm{H}^{+}\right]$, so:

$$
\begin{array}{llll}
\mathrm{HA} & \rightleftharpoons & \mathrm{H}^{+} & +\quad \mathrm{A}^{-}
\end{array}
$$

Initial $\quad 5.05 \times 10^{-4} \mathrm{~mol} / \mathrm{V}$
0
Equil. $\quad\left(5.05 \times 10^{-4} / \mathrm{V}\right)-\left(1.00 \times 10^{-5}\right) \quad 1.00 \times 10^{-5} \quad 1.00 \times 10^{-5}$
$\mathrm{K}_{\mathrm{a}}=\frac{\left(1.00 \times 10^{-5}\right)^{2}}{\left(5.05 \times 10^{-4} / \mathrm{V}\right)-\left(1.00 \times 10^{-5}\right)}=1.00 \times 10^{-6}$
$1.00 \times 10^{-4}=\left(5.05 \times 10^{-4} / V\right)-1.00 \times 10^{-5}$
$\mathrm{V}=4.59 \mathrm{~L} ; 50.0 \mathrm{~mL}$ are present initially, so we need to add 4540 mL of water.

Marathon Problems

153. To determine the pH of solution A , the K_{a} value for HX must be determined. Use solution B to determine K_{b} for X^{-}, which can then be used to calculate K_{a} for $\mathrm{HX}\left(\mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{b}}\right)$.

Solution B:

$$
\mathrm{X}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HX}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{HX}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{X}^{-}\right]}
$$

Initial	$0.0500 M$		0
Change	$-x$	$+x$	~ 0
Equil.	$0.0500-x$		x

$\mathrm{K}_{\mathrm{b}}=\frac{x^{2}}{0.0500-x}$; from the problem, $\mathrm{pH}=10.02$, so $\mathrm{pOH}=3.98$ and $\left[\mathrm{OH}^{-}\right]=x=10^{-3.98}$
$\mathrm{K}_{\mathrm{b}}=\frac{\left(10^{-3.98}\right)^{2}}{0.0500-10^{-3.98}}=2.2 \times 10^{-7}$

Solution A:

$\mathrm{K}_{\mathrm{a}, \mathrm{HX}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{b}, \mathrm{X}^{-}}=\left(1.0 \times 10^{-14}\right) /\left(2.2 \times 10^{-7}\right)=4.5 \times 10^{-8}$
$\mathrm{HX} \rightleftharpoons \mathrm{H}^{+}+\mathrm{X}^{-} \quad \mathrm{K}_{\mathrm{a}}=4.5 \times 10^{-8}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]}$
$\begin{array}{lllrr}\text { Initial } & 0.100 M \\ \text { Change } & -x & & \sim 0 & 0 \\ \text { Equil. } & 0.100-x & & x & +x \\ & & x\end{array}$
$\mathrm{K}_{\mathrm{a}}=4.5 \times 10^{-8}=\frac{x^{2}}{0.100-x} \approx \frac{x^{2}}{0.100}, x=\left[\mathrm{H}^{+}\right]=6.7 \times 10^{-5} \mathrm{M}$
Assumptions good (x is 0.067% of 0.100); $\mathrm{pH}=4.17$
Solution C:
Major species: $\mathrm{H}_{2} \mathrm{O}, \mathrm{HX}\left(\mathrm{K}_{\mathrm{a}}=4.5 \times 10^{-8}\right), \mathrm{Na}^{+}$, and OH^{-}; the OH^{-}from the strong base is exceptional at accepting protons. OH^{-}will react with the best acid present (HX), and we can assume that OH^{-}will react to completion with HX , that is, until one (or both) of the reactants runs out. Because we have added one volume of substance to another, we have diluted both solutions from their initial concentrations. What hasn't changed is the moles of each reactant. So let's work with moles of each reactant initially.

Mol HX $=0.0500 \mathrm{~L} \times \frac{0.100 \mathrm{molHX}}{\mathrm{L}}=5.00 \times 10^{-3} \mathrm{~mol} \mathrm{HX}$
$\mathrm{Mol} \mathrm{OH}=~=~ 0.0150 \mathrm{~L} \times \frac{0.250 \mathrm{molNaOH}}{\mathrm{L}} \times \frac{1 \mathrm{molOH}^{-}}{\mathrm{mol} \mathrm{NaOH}}=3.75 \times 10^{-3} \mathrm{~mol} \mathrm{OH}^{-}$
Now lets determine what is remaining in solution after OH^{-}reacts completely with HX. Note that OH^{-}is the limiting reagent.

	HX	$+\mathrm{OH}^{-}$	\rightarrow	X^{-}	+
			$\mathrm{H}_{2} \mathrm{O}$		
Before	$5.00 \times 10^{-3} \mathrm{~mol}$	$3.75 \times 10^{-3} \mathrm{~mol}$		0	
Change	-3.75×10^{-3}	-3.75×10^{-3}	\rightarrow	$+3.75 \times 10^{-3}$	$+3.75 \times 10^{-3}$
After	$1.25 \times 10^{-3} \mathrm{~mol}$	0		$3.75 \times 10^{-3} \mathrm{~mol}$	-

Completion
After reaction, the solution contains $\mathrm{HX}, \mathrm{X}^{-}, \mathrm{Na}^{+}$and $\mathrm{H}_{2} \mathrm{O}$. The Na^{+}(like most +1 metal ions) has no effect on the pH of water. However, HX is a weak acid and its conjugate base, X^{-}, is a weak base. Since both K_{a} and K_{b} reactions refer to these species, we could use either reaction to solve for the pH ; we will use the K_{b} reaction. To solve the equilibrium problem using the K_{b} reaction, we need to convert to concentration units since K_{b} is in concentration units of $\mathrm{mol} / \mathrm{L}$.
$[\mathrm{HX}]=\frac{1.25 \times 10^{-3} \mathrm{~mol}}{(0.0500+0.0150) \mathrm{L}}=0.0192 \mathrm{M} ;\left[\mathrm{X}^{-}\right]=\frac{3.75 \times 10^{-3} \mathrm{~mol}}{0.0650 \mathrm{~L}}=0.0577 \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=0$ (We reacted all of it to completion.)

$$
\mathrm{X}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HX}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=2.2 \times 10^{-7}
$$

$\left.\begin{array}{lllcc}\text { Initial } & 0.0577 \mathrm{M} & & 0.0192 \mathrm{M} & 0 \\ & x \mathrm{~mol} / \mathrm{L} \text { of } \mathrm{X}^{-} & \text {reacts to reach equilibrium }\end{array}\right]$
$\mathrm{K}_{\mathrm{b}}=2.2 \times 10^{-7}=\frac{(0.0192+x) x}{0.0577-x} \approx \frac{(0.0192) x}{0.0577} \quad$ (assuming x is $\left.\ll 0.0192\right)$
$x=\left[\mathrm{OH}^{-}\right]=\frac{\left(2.2 \times 10^{-7}\right)(0.0577)}{0.0192}=6.6 \times 10^{-7} \mathrm{M}$; assumptions great $(x$ is 0.0034% of 0.0192).
$\left[\mathrm{OH}^{-}\right]=6.6 \times 10^{-7} \mathrm{M}, \mathrm{pOH}=6.18, \mathrm{pH}=14.00=6.18=7.82=\mathrm{pH}$ of solution C
The combination is 4-17-7-82.
154. a. Strongest acid from group $\mathrm{I}=\mathrm{HCl}$; weakest base (smallest K_{b}) from group $\mathrm{II}=\mathrm{NaNO}_{2}$
$0.20 M \mathrm{HCl}+0.20 M \mathrm{NaNO}_{2}$; major species $=\mathrm{H}^{+}, \mathrm{Cl}^{-}, \mathrm{Na}^{+}, \mathrm{NO}_{2}^{-}$, and $\mathrm{H}_{2} \mathrm{O}$
Let the H^{+}react to completion with the NO_{2}^{-}; then solve the back equilibrium problem.

	H^{+}	$+\mathrm{NO}_{2}^{-}$	$\rightarrow \mathrm{HNO}_{2}$	
Before After	0.10 M	0.10 M	0	(Molarities are halved due to dilution.)
	0	0	0.10 M	
	HNO_{2}	\rightleftharpoons	$\mathrm{H}^{+}+\mathrm{NO}_{2}^{-}$	$\mathrm{K}_{\mathrm{a}}=4.0 \times 10^{-4}$

Initial	0.10 M		0	0
Change	$-x$	\rightarrow	$+x$	$+x$
Equil.	$0.10-x$		x	x

$\frac{x^{2}}{0.10-x}=4.0 \times 10^{-4} ;$ solving, $x=\left[\mathrm{H}^{+}\right]=6.1 \times 10^{-3} \mathrm{M} ; \mathrm{pH}=2.21$
b. Weakest acid from group $\mathrm{I}=\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NHCl}$; best base from group II $=$ KOI; The dominant equilibrium will be the best base reacting with the best acid.

$$
\mathrm{OI}^{-}+\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NH}^{+} \rightleftharpoons \mathrm{HOI}+\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}
$$

Initial	$0.10 M$	$0.10 M$	0	0
Equil.	$0.10-x$	$0.10-x$	x	x

$$
\begin{aligned}
& \mathrm{K}=\frac{\mathrm{K}_{\mathrm{a},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NH}^{+}}}{\mathrm{K}_{\mathrm{a}, \text { HoI }}}=\frac{1.0 \times 10^{-14}}{4.0 \times 10^{-4}} \times \frac{1}{2.0 \times 10^{-11}}=1.25 \text { (carrying extra sig. fig.) } \\
& \frac{x^{2}}{(0.10-x)^{2}}=1.25, \frac{x}{0.10-x}=1.12, x=0.053 \mathrm{M}
\end{aligned}
$$

So: $[\mathrm{HOI}]=0.053 \mathrm{M}$ and $\left[\mathrm{OI}^{-}\right]=0.10-x=0.047 \mathrm{M}$; using the K_{a} equilibrium constant for HOI to solve for $\left[\mathrm{H}^{+}\right]$:

$$
2.0 \times 10^{-11}=\frac{\left[\mathrm{H}^{+}\right](0.047)}{(0.053)},\left[\mathrm{H}^{+}\right]=2.3 \times 10^{-11} M ; \mathrm{pH}=10.64
$$

c. K_{a} for $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NH}^{+}=\frac{1.0 \times 10^{-14}}{4.0 \times 10^{-4}}=2.5 \times 10^{-11}$
K_{b} for $\mathrm{NO}_{2}^{-}=\frac{1.0 \times 10^{-14}}{4.0 \times 10^{-4}}=2.5 \times 10^{-11}$
Because $\mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{b}}$, mixing $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NHCl}$ with NaNO_{2} will result in a solution with $\mathrm{pH}=7.00$.

